• Photonics Research
  • Vol. 11, Issue 10, 1647 (2023)
Zihang Peng1, Yijun Huang1, Kaiyuan Zheng2, Chuantao Zheng1,*..., Mingquan Pi1, Huan Zhao1, Jialin Ji1, Yuting Min1, Lei Liang3, Fang Song1, Yu Zhang1, Yiding Wang1 and Frank K. Tittel4|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 2Department of Electrical Engineering and Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong 518060, China
  • 3State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 4Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
  • show less
    DOI: 10.1364/PRJ.494762 Cite this Article Set citation alerts
    Zihang Peng, Yijun Huang, Kaiyuan Zheng, Chuantao Zheng, Mingquan Pi, Huan Zhao, Jialin Ji, Yuting Min, Lei Liang, Fang Song, Yu Zhang, Yiding Wang, Frank K. Tittel, "Slow-light-enhanced on-chip 1D and 2D photonic crystal waveguide gas sensing in near-IR with an ultrahigh interaction factor," Photonics Res. 11, 1647 (2023) Copy Citation Text show less
    References

    [1] J. Smulko, M. Trawka. Gas selectivity enhancement by sampling-and-hold method in resistive gas sensors. Sens. Actuators B, 219, 17-21(2015).

    [2] Z. Li, X. Gui, C. Hu, L. Zheng, H. Wang, J. Gong. Optical gas sensor based on gas conjugated interference light source. IEEE Photon. Technol. Lett., 27, 1550-1552(2015).

    [3] Y. Jeong, J. Shin, Y. Hong, M. Wu, S. Hong, K. C. Kwon, S. Choi, T. Lee, H. Jang, J. Lee. Gas sensing characteristics of the FET-type gas sensor having inkjet-printed WS2 sensing layer. Solid-State Electron., 153, 27-32(2019).

    [4] S. Zheng, H. Cai, L. Xu, N. Li, Z. Gu, Y. Zhang, W. Chen, Y. Zhou, Q. Zhang, L. Lee. Silicon substrate-integrated hollow waveguide for miniaturized optical gas sensing. Photon. Res., 10, 261-268(2022).

    [5] L. Hu, C. Zheng, D. Yao, D. Yu, Z. Liu, J. Zheng, Y. Wang, F. K. Tittel. A hollow-core photonic band-gap fiber based methane sensor system capable of reduced mode interference noise. Infrared Phys. Technol., 97, 101-107(2019).

    [6] J. Li, G. Luo, Z. Du, Y. Ma. Hollow waveguide enhanced dimethyl sulfide sensor based on a 3.3 μm interband cascade laser. Sens. Actuators B, 255, 3550-3557(2018).

    [7] K. Zheng, C. Zheng, J. Li, N. Ma, Z. Liu, Y. Zhang, Y. Wang, F. K. Tittel. Near-infrared methane sensor system using off-axis integrated cavity output spectroscopy with novel dual-input dual-output coupling scheme for mode noise suppression. Sens. Actuators B, 308, 127674(2020).

    [8] M. Pi, C. Zheng, H. Zhao, Z. Peng, J. Lang, J. Ji, L. Liang, Y. Zhang, Y. Wang, F. K. Tittel. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy. Opt. Lett., 46, 4797-4800(2021).

    [9] C. Ranacher, C. Consani, N. Vollert, A. Tortschanoff, M. Bergmeister, T. Grille, B. Jakoby. Characterization of evanescent field gas sensor structures based on silicon photonics. IEEE Photon. J., 10, 2700614(2018).

    [10] M. S. Yazici, B. Dong, D. Hasan, F. Sun, C. Lee. Integration of MEMS IR detectors with MIR waveguides for sensing applications. Opt. Express, 28, 11524-11537(2020).

    [11] C. Consania, C. Ranachera, A. Tortschanoffa, T. Grilleb, P. Irsiglerb, B. Jakoby. Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter. Sens. Actuators B, 274, 60-65(2018).

    [12] C. Ranachera, C. Consania, A. Tortschanoffa, R. Jannesarib, M. Bergmeisterc, T. Grillec, B. Jakoby. Mid-infrared absorption gas sensing using a silicon strip waveguide. Sens. Actuators A, 277, 117-123(2018).

    [13] N. Singh, A. Casas-Bedoya, D. D. Hudson, A. Read, E. Mägi, B. J. Eggleton. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide. Opt. Lett., 41, 5776-5779(2017).

    [14] M. Vlk, A. Datta, S. Alberti, H. D. Yallew, V. Mittal, S. C. Factor, G. S. Murugan, J. Jágerská, S. C. Factor. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci. Appl., 10, 26(2021).

    [15] B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat. Commun., 5, 4085(2014).

    [16] Q. Guo, J. Zhang, K. Yang, Y. Zhu, Q. Lu, N. Zhuo, S. Zhai, J. Liu, L. Wang, S. Liu, F. Liu. Monolithically integrated mid-infrared sensor with a millimeter-scale sensing range. Opt. Express, 30, 40657-40665(2022).

    [17] B. Hinkov, F. Pilat, L. Lux, P. L. Souza, M. David, A. Schwaighofer, D. Ristanic, B. Schwarz, H. Detz, A. M. Andrews, B. Lendl, G. Strasser. A mid-infrared lab-on-a-chip for dynamic reaction monitoring. Nat. Commun., 13, 4753(2022).

    [18] N. A. Mortensen, S. Xiao. Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl. Phys. Lett., 90, 141108(2007).

    [19] L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, W. M. J. Green. Methane absorption spectroscopy on a silicon photonic chip. Optica, 4, 1322-1325(2017).

    [20] M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, F. K. Tittel. Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect. Sens. Actuators B, 297, 126732(2019).

    [21] M. Pi, C. Zheng, J. Ji, H. Zhao, Z. Peng, J. Lang, L. Liang, Y. Zhang, Y. Wang, F. K. Tittel. Surface-enhanced infrared absorption spectroscopic chalcogenide waveguide sensor using a silver island film. ACS Appl. Mater. Interface, 13, 32555-32563(2021).

    [22] F. Ottonello-Briano, C. Errando-Herranz, H. Rödjegård, H. Martin, H. Sohlström, K. Gylfason. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide. Opt. Lett., 45, 109-112(2020).

    [23] A. Rostamian, E. Madadi-Kandjani, H. Dalir, V. J. Sorger, R. T. Chen. Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared. Nanophotonics, 10, 1675-1682(2021).

    [24] A. Gervais, P. Jean, W. Shi, S. LaRochelle. Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy. IEEE J. Sel. Top. Quantum Electron., 25, 5200308(2019).

    [25] W. C. Lai, S. Chakravarty, Y. Zou, R. T. Chen. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy. Opt. Lett., 38, 3799-802(2013).

    [26] W. Liu, Y. Ma, Y. Chang, B. Dong, J. Wei, Z. Ren, C. Lee. Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications. Nanophotonics, 10, 1861-1870(2021).

    [27] L. Sun, Y. Zhang, Y. He, H. Wang, Y. Su. Subwavelength structured silicon waveguides and photonic devices. Nanophotonics, 9, 1321-1340(2020).

    [28] K. M. Yoo, J. Midkiff, A. Rostamian, C. J. Chung, H. Dalir, R. T. Chen. InGaAs membrane waveguide: a promising platform for monolithic integrated mid-infrared optical gas sensor. ACS Sens., 5, 861-869(2020).

    [29] W. C. Lai, S. Chakravarty, X. Wang, C. Lin, R. T. Chen. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Opt. Lett., 36, 984-986(2011).

    [30] Y. Zou, S. Chakravarty, P. Wray, R. T. Chen. Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection. Sens. Actuators B, 221, 1094-1103(2015).

    [31] K. Qin, S. Hu, S. T. Retterer, I. I. Kravchenko, S. M. Weiss. Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity. Opt. Lett., 41, 753-756(2016).

    [32] N. R. Ramanujam, A. Panda, P. Yupapin, A. Natesan, P. Prabpal. Numerical characterization of 1D-photonic crystal waveguide for female reproductive hormones sensing applications. Physica B, 639, 414011(2022).

    [33] R. R. Singh, V. Priye. Silicon nanowire optical rectangular waveguide biosensor for DNA hybridization. IEEE Photon. Technol. Lett., 30, 1123-1126(2018).

    [34] https://refractiveindex.info. https://refractiveindex.info

    [35] J. T. Robinson, L. Chen, M. Lipson. On-chip gas detection in silicon optical microcavities. Opt. Express, 16, 4296-4301(2008).

    [36] W. Yang, X. Chen, X. Shi, W. Lu. Selective modes excitation in multimode photonic crystal waveguides. Superlattices Microstruct., 49, 74-80(2011).

    [37] J. Tan, M. Lu, A. Stein, W. Jiang. High-purity transmission of a slow light odd mode in a photonic crystal waveguide. Opt. Lett., 37, 3189-3191(2012).

    [38] X. Chen, H. K. Tsang. Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides. Opt. Lett., 36, 796-798(2011).

    [39] X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, R. T. Chen. Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics. Appl. Phys. Lett., 101, 031109(2012).

    [40] J. Ji, Y. Huang, M. Pi, H. Zhao, Z. Peng, C. Li, Q. Wang, Y. Zhang, Y. Wang, C. Zheng. Performance improvement of on-chip mid-infrared waveguide methane sensor using wavelet denoising and Savitzky-Golay filtering. Infrared Phys. Technol., 127, 104469(2022).

    [41] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab. Active control of slow light on a chip with photonic crystal waveguides. Nature, 438, 65-69(2005).

    [42] J. Y. Lee, P. M. Fauchet. Slow-light dispersion in periodically patterned silicon microring resonators. Opt. Lett., 37, 58-60(2012).

    [43] W. Liu, Y. Ma, X. Liu, J. Zhou, C. Xu, B. Dong, C. Lee. Larger-than-unity external optical field confinement enabled by metamaterial-assisted comb waveguide for ultrasensitive long-wave infrared gas spectroscopy. Nano Lett., 22, 6112-6120(2022).

    Zihang Peng, Yijun Huang, Kaiyuan Zheng, Chuantao Zheng, Mingquan Pi, Huan Zhao, Jialin Ji, Yuting Min, Lei Liang, Fang Song, Yu Zhang, Yiding Wang, Frank K. Tittel, "Slow-light-enhanced on-chip 1D and 2D photonic crystal waveguide gas sensing in near-IR with an ultrahigh interaction factor," Photonics Res. 11, 1647 (2023)
    Download Citation