[1] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 143-171(2011).
[2] Mishra G P, Kumar D, Chaudhary V S et al. Terahertz refractive index sensor with high sensitivity based on two-core photonic crystal fiber[J]. Microwave and Optical Technology Letters, 63, 24-31(2021).
[3] Yahiaoui R, Strikwerda A C, Jepsen P U. Terahertz plasmonic structure with enhanced sensing capabilities[J]. IEEE Sensors Journal, 16, 2484-2488(2016).
[4] Sultana J, Islam M S, Islam M R et al. High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications[J]. Electronics Letters, 54, 61-62(2018).
[5] Karpowicz N, Dai J M, Lu X F et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”[J]. Applied Physics Letters, 92, 011131(2008).
[6] Wang B, Jia C R, Yang J T et al. Highly birefringent, low flattened dispersion photonic crystal fiber in the terahertz region[J]. IEEE Photonics Journal, 13, 7200210(2021).
[7] Lee Y S, Kim S, Oh K. Highly birefringent slotted-porous-core photonic crystal fiber with elliptical-hole cladding for terahertz applications[J]. Current Optics and Photonics, 6, 129-136(2022).
[8] Linsie A A, Mondal S, Prince S. Highly birefringent hexagonal porous core photonic crystal fiber for polarization maintaining integrated THz-photonics applications[J]. Optical and Quantum Electronics, 56, 1672-1692(2024).
[9] Hamid N I B, Islam M R, Khan M R H et al. High birefringent slotted core slotted cladding porous core PCF for THz waveguide[J]. Optics Communications, 574, 131120(2025).
[10] Li S S, Zhang H, Chang S J et al. Terahertz ultra-high birefringent photonic crystal fiber with hierarchical microstructured core[J]. Journal of Nankai University (Natural Science), 55, 62-68(2022).
[11] Wang D D, Wang L L, Zhang T et al. Low loss and high birefringence Topas photonic bandgap fiber at terahertz frequency[J]. Acta Photonica Sinica, 43, 0606002(2014).
[12] Yang T Y, Ding C, Ziolkowski R W et al. An epsilon-near-zero (ENZ) based, ultra-wide bandwidth terahertz single-polarization single-mode photonic crystal fiber[J]. Journal of Lightwave Technology, 39, 223-232(2021).
[13] Duguay M A, Kokubun Y, Koch T L et al. Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures[J]. Applied Physics Letters, 49, 13-15(1986).
[14] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).
[15] Sultana J, Islam M S, Cordeiro C M B et al. Terahertz hollow core antiresonant fiber with metamaterial cladding[J]. Fibers, 8, 14-25(2020).
[16] Xiao H, Li H S, Wu B L et al. Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber[J]. Journal of Optics, 21, 085708(2019).
[17] Yan S B, Lou S Q, Wang X et al. High-birefringence hollow-core anti-resonant THz fiber[J]. Optical and Quantum Electronics, 50, 162-175(2018).
[18] Mollah M A, Rana S, Subbaraman H. Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regime[J]. Results in Physics, 17, 103092(2020).
[19] Ankan I M, Mollah M A, Paul A K et al. Polarization-maintaining and polarization-filtering negative curvature hollow core fiber in THz regime[C]. Bangladesh, 612-615(2020).
[20] Yuan Z W, Wang Y, Yan D X et al. Study on the high birefringence and low confinement loss terahertz fiber based on the combination of double negative curvature and nested claddings[J]. Journal of Physics D: Applied Physics, 55, 115106(2022).
[21] Liu Z H, Wen J L, Zhang L et al. Multiple designs with broad applicability for enhancing birefringence in low-loss terahertz HC-ARF[J]. Results in Physics, 52, 106793(2023).
[22] Dai J M, Zhang J Q, Zhang W L et al. Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon[J]. Journal of the Optical Society of America B, 21, 1379-1386(2004).
[23] Sun G R, Liu Q, Mu H W et al. Anti-resonant fiber with nested U-shape tubes for low-loss terahertz waveguides[J]. Optics & Laser Technology, 163, 109424(2023).
[24] Shi D F, Hui Z Q, Han D D et al. Polarization characteristics of high birefringence photonic crystal fiber with Ferries-wheel-like porous core in terahertz regime[J]. Acta Optica Sinica, 43, 1006002(2023).
[25] Hasanuzzaman G K M, Iezekiel S, Markos C et al. Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance[J]. Optics Communications, 426, 477-482(2018).
[26] Ding W, Wang Y Y. Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers[J]. Optics Express, 23, 21165-21174(2015).
[27] Ma X X, Li J S, Guo H T et al. Single-mode single-polarization chalcogenide negative-curvature hollow-core fibers at 4 μm[J]. Acta Optica Sinica, 43, 1906003(2023).
[28] Lou Y, Shi W H, Zhang T T. Numerical study of hollow-core anti-resonant fiber with large transmission window and low confinement loss[J]. Journal of Optoelectronics·Laser, 33, 1087-1093(2022).
[29] Poletti F. Nested antiresonant nodeless hollow core fiber[J]. Optics Express, 22, 23807-23828(2014).
[30] Hui Z Q, Yang X, Han D D et al. High birefringence hollow-core anti-resonant terahertz photonic crystal fiber with ultra-low loss[J]. Journal of Infrared and Millimeter Waves, 41, 563-572(2022).
[31] Belardi W, de Lucia F, Poletti F et al. Composite material hollow antiresonant fibers[J]. Optics Letters, 42, 2535-2538(2017).
[32] Xue L, Sheng X Z, Mu Q Y et al. Single-mode hollow-core anti-resonant waveguides for low-loss THz wave propagation[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 44, 673-692(2023).
[33] Liu Q, Sun G R, Sun Y D et al. Negative curvature fiber (NCF) polarization filter with large polarization loss ratio and ultralow loss in the terahertz range[J]. Optics Communications, 568, 130736(2024).
[34] Talataisong W, Ismaeel R, Marques T H R et al. Mid-IR hollow-core microstructured fiber drawn from a 3D printed PETG preform[J]. Scientific Reports, 8, 8113-8121(2018).