• Photonics Research
  • Vol. 5, Issue 6, 583 (2017)
Wei Zhou1、2、3, Xiaodong Xu1、2, Rui Xu1、2, Xuliang Fan4, Yongguang Zhao1、2, Lei Li1、2, Dingyuan Tang1、2, and Deyuan Shen1、2、*
Author Affiliations
  • 1Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • 2Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, China
  • 3e-mail: weizhou@jsnu.edu.cn
  • 4Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.1364/PRJ.5.000583 Cite this Article Set citation alerts
    Wei Zhou, Xiaodong Xu, Rui Xu, Xuliang Fan, Yongguang Zhao, Lei Li, Dingyuan Tang, Deyuan Shen. Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region[J]. Photonics Research, 2017, 5(6): 583 Copy Citation Text show less
    References

    [1] K. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [2] Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, D. J. Richardson. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window. Opt. Express, 21, 26450-26455(2013).

    [3] E. De Tommasi, G. Casa, L. Gianfrani. High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005  μm. Appl. Phys. B, 85, 257-263(2006).

    [4] W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, J. Hou. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system. Opt. Lett., 39, 1849-1852(2014).

    [5] A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, W. Sibbett. Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2  μm. Opt. Express, 19, 9995-10000(2011).

    [6] A. A. Lagatsky, O. L. Antipov, W. Sibbett. Broadly tunable femtosecond Tm: Lu2O3 ceramic laser operating around 2070  nm. Opt. Express, 20, 19349-19354(2012).

    [7] T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, J. Xu. 1.21  W passively mode-locked Tm:LuAG laser. Opt. Express, 23, 11815-11825(2015).

    [8] A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, W. Sibbett. Passive mode locking of a Tm, Ho:KY(WO4)2 laser around 2  μm. Opt. Lett., 34, 2587-2589(2009).

    [9] Y. C. Wang, R. J. Lan, X. Mateso, J. Li, C. Hu, C. Y. Li, S. Suomalainen, A. HÄrkÖnen, M. Guina, V. Petrov, W. Gribner. Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1  μm. Opt. Express, 24, 18003-18012(2016).

    [10] C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, L. Zheng. Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM. Opt. Lett., 42, 839-842(2017).

    [11] A. Godard. Infrared (2-12  μm) solid-state laser sources: a review. C. R. Physique, 8, 1100-1128(2007).

    [12] B. M. Walsh. Review of Tm and Ho materials: spectroscopy and lasers. Laser Phys., 19, 855-866(2009).

    [13] F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, S. R. Mordon. Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis. Lasers Surg. Med., 42, 299-305(2010).

    [14] M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [15] X. Y. Chen, Q. Gao, X. L. Wang, X. D. Li. Experimental design and parameter optimization for laser three-dimensional (3-D) printing. Laser Eng., 33, 189-196(2016).

    [16] M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, H. C. Kapteyn. Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source. Phys. Rev. Lett., 105, 173901(2010).

    [17] F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, D. Y. Shen. Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm. Opt. Mater. Express, 7, 1290-1294(2017).

    [18] W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz. Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber. Opt. Express, 17, 11007-11012(2009).

    [19] N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, P. Laporta. Passive mode-locking of a diode-pumped Tm:GdLiF4 laser. Appl. Phys. B, 101, 75-78(2010).

    [20] S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, C. Y. Tu. Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals. Mater. Lett., 141, 59-62(2015).

    [21] L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, L. J. Qian. Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser. Opt. Lett., 40, 356-358(2015).

    [22] J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, R. Moncorgé. Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber. IEEE Photon. Technol. Lett., 29, 515-518(2017).

    [23] W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, D. Y. Shen. Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser. Opt. Express, 25, 1815-1823(2017).

    [24]

    [25] N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, P. Laporta. High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9  μm. Opt. Lett., 34, 3559-3561(2009).

    [26] R. C. Stoneman, L. Esterowitz. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. Opt. Lett., 15, 486-488(1990).

    [27] L. A. Zenteno, H. Po, N. M. Cho. All-solid-state passively Q-switched mode-locked Nd-doped fiber laser. Opt. Lett., 15, 115-117(1990).

    [28] D. von der Linde. Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B, 39, 201-217(1986).

    [29] Y. B. Liao. Polarization Optics(2003).

    Wei Zhou, Xiaodong Xu, Rui Xu, Xuliang Fan, Yongguang Zhao, Lei Li, Dingyuan Tang, Deyuan Shen. Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region[J]. Photonics Research, 2017, 5(6): 583
    Download Citation