• Laser & Optoelectronics Progress
  • Vol. 50, Issue 3, 30005 (2013)
Lei Min*, Li Xiaoping, and Miao Huaikun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.030005 Cite this Article Set citation alerts
    Lei Min, Li Xiaoping, Miao Huaikun. Development of Contamination Control Techniques for EUV Optics Surfaces[J]. Laser & Optoelectronics Progress, 2013, 50(3): 30005 Copy Citation Text show less
    References

    [1] A. Barty, K. A. Goldberg. The effects of radiation induced carbon contamination on the performance of an EUV lithographic optic[C]. SPIE, 2003, 5037: 450~459

    [2] J. Pankert, R. Apetzl, K. Bergmann et al.. Integrating Philips′ extreme UV source in the alpha-tools[C]. SPIE, 2005, 5751: 260~271

    [3] P. A. Grunow, L. E. Klebanoff, S. Graham et al.. Rates and mechanisms of optic contamination in the EUV Engineering Test Stand[C]. SPIE, 2003, 5037: 418~428

    [4] H. Takase, S. Terashima, Y. Gomei et al.. Study of ruthenium-capped multilayer mirror for EUV irradiation durability[C]. SPIE, 2006, 6151: 855~858

    [5] T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy et al.. Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography[J]. Appl. Surf. Sci., 2006, 253(4): 1691~1708

    [6] K. Hamamoto, Y. Tanaka, T. Watanabe et al.. Outgassing characteristics of structural materials and the removal of contaminants from EUVL masks using 172-nm radiation[J]. J. Photopolymer Sci. Technol., 2004, 17(3): 367~372

    [7] T. Watanabe, H. Kinoshita, H. Nii et al.. Photoinduced outgassing from the resist for extreme ultraviolet lithography by the analysis of mass spectroscopy[J]. J. vA. sci. Technol. B, 2001, 19(3): 736~742

    [8] H. Hada, T. Watanabe, K. Hamamoto et al.. Evaluation of resists outgassing by EUV irradiation[C]. SPIE, 2004, 5374: 686~694

    [9] I. Pollentier. Study of EUV resist outgassing/contamination for device integration using EUVL processes[J]. J. Photopolymer Sci. Technol., 2010, 23(5): 605~612

    [10] B. V. Yakshinskiy, I. Nishiyama, A. Wueest et al.. Surface phenomena related to degradation of EUV mirrors: interaction of ethyl alcohol with ruthenium surfaces[C]. SPIE, 2008, 6921: 69213E

    [11] R. Wasielewski, B. V. Yakshinskiy, M. N. Hedhili et al.. Surface chemistry of Ru: relevance to optics lifetime in EUVL[C]. SPIE, 2007, 6533: 653311

    [12] K. Boller, R. P. Haelbich, H. Hogrefe et al.. Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research, 1983, 208(1-3): 273~279

    [13] J. Hollenshead, L. Klebanoff. Modeling radiation-induced carbon contamination of extreme ultraviolet optics[J]. J. Vac. Sci. Technol. B, 2006, 24(1): 64~82

    [14] R. Kurt, M. van Beek, C. Crombeen et al.. Radiation-induced carbon contamination of optics[C]. SPIE, 2002, 4688: 702~709

    [15] S. Matsunari, T. Aoki, K. Murakami et al.. Carbon deposition on multi-layer mirrors by extreme ultra violet ray irradiation[C]. SPIE, 2007, 6517: 65172X

    [16] S. B. Hill, N. S. Faradzhev, C. S. Tarrio et al.. Measuring the EUV-induced contamination rates of TiO2-capped multilayer optics by anticipated production-environment hydrocarbons[C]. SPIE, 2009, 7211: 727111

    [17] S. B. Hill, N. S. Faradzhev, L. J. Richter et al.. Complex species and pressure dependence of intensity scaling laws for contamination rates of EUV optics determined by XPS and ellipsometry[C]. SPIE, 2010, 7631: 76310E

    [18] S. B. Hill, N. S. Faradzhev, L. J. Richter et al.. Optics contamination studies in support of high-throughput EUV lithography tools[C]. SPIE, 2011, 7961: 79612M

    [19] B. V. Yakshinskiy, S. Zalkind, R. A. Bartynski et al.. Carbon film growth on model electron-irradiated MLM cap layer: interaction of benzene and MMA vapor with TiO2 surface[C]. SPIE, 2009, 7271: 727110

    [20] B. V. Yakshinskiy, M. N. Hedhili, S. Zalkind et al.. Radiation-induced defect formation and reactivity of model TiO2 capping layers with MMA: a comparison with Ru[C]. SPIE, 2008, 6921: 692111

    [21] M. E. Malinowski, C. Steinhaus, M. Clift et al.. Controlling contamination in Mo/Si multilayer mirrors by Si surface-capping modifications[C]. SPIE, 2002, 4668: 442~453

    [22] J. Hollenshead, L. Klebanoff. Modeling extreme ultraviolet H2O oxidation of ruthenium optic coatings[J]. J. Va. Sci. Technol. B, 2006, 24(1): 118~130

    [23] P. A. Thiel, T. E. Madey. The interaction of water with solid surfaces: fundamental aspects[J]. Surface Science Reports, 1987, 7(6-8): 211~385

    [24] I. Nishiyama. Model of Ru-surface oxidation for the lifetime scaling of EUVL projection optics mirror[C]. SPIE, 2006, 6151: 129~138

    [25] Y. Gomei, H. Takase, T. Aoki et al.. Scaling law in acceleration test of extreme ultraviolet lithography projection optics mirror contamination[J]. J. Vac. Sci. Technol., 2005, 23(6): 2848~2851

    [26] L. E. Klebanoff, M. E. Malinowski, P. Grunow et al.. First environmental data from the EUV engineering test stand[C]. SPIE, 2001, 4343: 342~346

    [27] Y. Kakutani, M. Niibe, Y. Gomei et al.. Inhibition of contamination of Ru-capped multilayer mirrors for extreme ultraviolet lithography projection optics by ethanol[J]. Jpn. J. Appl. Phys. Part 1, 2007, 46(9BSI): 6155~6160

    [28] N. Koster, B. Mertens, R. Jansen et al.. Molecular contamination mitigation in EUVL by environmental control[J]. Microelectronic Engineering, 2002, 61(2): 65~76

    [29] L. E. Klebanoff, W. M. Cliff, M. E. Malinowski et al.. Radiation-induced protective carbon coating for extreme ultraviolet optics[J]. J. Vac. Sci. Technol. B, 2002, 20(2): 696~703

    [30] K. Koida, M. Niibe, Y. Kakutani et al.. Protection from surface oxidation of Ru capping layers for EUVL projection optics mirrors by introducing hydrocarbon gas[C]. SPIE, 2008, 6921: 69211

    [31] H. Meiling, B. Mertens, F. Stietz et al.. Prevention of MoSi multilayer reflection loss in EUVL tools[C]. SPIE, 2001, 4506: 93~104

    [32] K. Murakami, T. Oshino, H. Kondo et al.. Development of EUV lithography tool technologies at Nikon[C]. SPIE, 2012, 8322: 832215

    [33] S. Bajt, N. V. Edwards, T. E. Madey. Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation[J]. Surface Science Reports, 2008, 63(2): 73~99

    [34] H. Meiling, V. Banine, P. Kuerz et al.. The EUV program at ASML: an update[C]. SPIE, 2003, 5037: 24~35

    [35] S. A. Bajt, H. N. Chapman, N. Nguyen et al.. Design and performance of capping layers for extreme-ultraviolet multilayer mirrors[J]. Appl. Opt., 2003, 42(28): 5750~5758

    [36] S. Yulin, N. Benoit, T. Feigl et al.. Mo/Si multilayers with enhanced TiO2- and RuO2-capping layers[C]. SPIE, 2008, 6921: 692118

    [37] S. Bajt, Z. R. Dai, E. J. Nelson et al.. Oxidation resistance of Ru-capped EUV multilayers[C]. SPIE, 2005, 5751: 118~127

    [38] S. Graham, C. Steinhaus, M. Clift et al.. Radio-frequency discharge cleaning of silicon-capped Mo/Si multilayer extreme ultraviolet optics[J]. J. Vac. Sci. Technol. B, 2002, 20(6): 2393~2400

    [39] S. Graham, M. E. Malinowski, C. E. Steinhaus et al.. Studies of EUV contamination mitigation[C]. SPIE, 2002, 4688: 431~441

    [40] M. Malinowski, P. Grunow, C. Steinhaus et al.. Use of molecular oxygen to reduce EUV-induced carbon contamination of optics[C]. SPIE, 2001, 4343: 347~356

    [41] K. Hamamoto, S. Takada, T. Watanabe et al.. Investigation of contamination removal from finished EUVL mask[J]. J. Photopolymer Sci. Technol., 2003, 16(3): 395~399

    [42] K. Hamamoto, Y. Tanaka, T. Watanabe et al.. Cleaning of extreme ultraviolet lithography optics and masks using 13.5 nm and 172 nm radiation[J]. J. Vac. Sci. Technol. B, 2005, 23(1): 247~251

    [43] T. Aoki, H. Kondo, S. Matsunari et al.. Apparatus for contamination control development in EUVA[C]. SPIE, 2005, 5751(1): 1137~1146

    [44] K. Tanaka, K. Hamamoto, N. Sakaya et al.. Cleaning characteristics of contaminated Imaging optics using 172 nm radiation[J]. Jpn. J. Appl. Phys. Part 1, 2007, 46(9BSI): 6150~6154

    [45] S. Graham, C. Steinhaus, M. Clift et al.. Atomic hydrogen cleaning of EUV multilayer optics[C]. SPIE, 2003, 5037: 520~529

    [46] H. Oizumi, H. Yamanashi, I. Nishiyama et al.. Contamination removal from EUV multilayer using atomic hydrogen generated by heated catalyzer[C]. SPIE, 2005, 5751: 1147~1154

    [47] I. Nishiyama, H. Oizumi, K. Motai et al.. Reduction of oxide layer on Ru surface by atomic-hydrogen treatment[J]. J. Vac. Sci. Technol. B, 2005, 23(6): 3129~3131

    [48] K. Motai, H. Oizumi, S. Miyagaki et al.. Atomic hydrogen cleaning of Ru-capped EUV multilayer mirror[C]. SPIE, 2007,6517: 65170F

    CLP Journals

    [1] You Xinghai, Zhang Bin. Influence of optical component quality on signal to noise ratio in infrared optical systems[J]. Infrared and Laser Engineering, 2018, 47(3): 320004

    [2] Wang Xun, Jin Chunshui, Kuang Shangqi, Yu Bo, Jin Fangyuan. Simulation Model of Surface Carbon Deposition Contamination Under Extreme Ultraviolet Radiation[J]. Acta Optica Sinica, 2014, 34(5): 531001

    Lei Min, Li Xiaoping, Miao Huaikun. Development of Contamination Control Techniques for EUV Optics Surfaces[J]. Laser & Optoelectronics Progress, 2013, 50(3): 30005
    Download Citation