• Journal of Semiconductors
  • Vol. 42, Issue 10, 101608 (2021)
Yung Jin Yoon and Jin Young Kim
Author Affiliations
  • Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
  • show less
    DOI: 10.1088/1674-4926/42/10/101608 Cite this Article
    Yung Jin Yoon, Jin Young Kim. A recent advances of blue perovskite light emitting diodes for next generation displays[J]. Journal of Semiconductors, 2021, 42(10): 101608 Copy Citation Text show less
    References

    [1] L M Herz. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett, 2, 1539(2017).

    [2] L N Quan, B P Rand, R H Friend et al. Perovskites for next-generation optical sources. Chem Rev, 119, 7444(2019).

    [3] S De Wolf, J Holovsky, S J Moon et al. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett, 5, 1035(2014).

    [4] G E Eperon, S D Stranks, C Menelaou et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 7, 982(2014).

    [5] L C Schmidt, A Pertegás, S González-Carrero et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc, 136, 850(2014).

    [6] L Protesescu, S Yakunin, M I Bodnarchuk et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 15, 3692(2015).

    [7] J Kang, L W Wang. High defect tolerance in lead halide perovskite CsPbBr3. J Phys Chem Lett, 8, 489(2017).

    [8] J Jeong, M Kim, J Seo et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592, 381(2021).

    [9] M Jeong, I W Choi, E M Go et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369, 1615(2020).

    [10] B R Sutherland, A K Johnston, A H Ip et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics, 2, 1117(2015).

    [11] Q Van Le, H W Jang, S Y Kim. Recent advances toward high-efficiency halide perovskite light-emitting diodes: Review and perspective. Small Methods, 2, 1700419(2018).

    [12] Z K Tan, R S Moghaddam, M L Lai et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 9, 687(2014).

    [13] K B Lin, J Xing, L Quan et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562, 245(2018).

    [14] T Chiba, Y Hayashi, H Ebe et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 12, 681(2018).

    [15] X B Shi, Y Liu, Z C Yuan et al. Optical energy losses in organic-inorganic hybrid perovskite light-emitting diodes. Adv Opt Mater, 6, 1800667(2018).

    [16] G H Carey, A L Abdelhady, Z J Ning et al. Colloidal quantum dot solar cells. Chem Rev, 115, 12732(2015).

    [17] M V Kovalenko, L Protesescu, M I Bodnarchuk. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358, 745(2017).

    [18] Y T Dong, Y K Wang, F L Yuan et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol, 15, 668(2020).

    [19] Y Dong, T Qiao, D Kim et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett, 18, 3716(2018).

    [20] F Zhang, H Zhong, C Chen et al. Brightly-luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano, 9, 4533(2015).

    [21] B Shu, Y Chang, E Xu et al. Highly efficient and blue-emitting CsPbBr3 quantum dots synthesized by two-step supersaturated recrystallization. Nanotechnology, 32, 145712(2021).

    [22] Y J Yoon, K T Lee, T K Lee et al. Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule, 2, 2105(2018).

    [23] G Nedelcu, L Protesescu, S Yakunin et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 15, 5635(2015).

    [24] D Parobek, Y Dong, T Qiao et al. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J Am Chem Soc, 139, 4358(2017).

    [25] J Z Song, J H Li, X M Li et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 27, 7162(2015).

    [26] Roo J De, M Ibáñez, P Geiregat et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 10, 2071(2016).

    [27] M I Bodnarchuk, S C Boehme, S ten Brinck et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett, 4, 63(2019).

    [28] J Pan, L Quan, Y B Zhao et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 28, 8718(2016).

    [29] Y S Shin, Y J Yoon, K T Lee et al. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals. ACS Appl Mater Interfaces, 11, 23401(2019).

    [30] S T Ochsenbein, F Krieg, Y Shynkarenko et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces, 11, 21655(2019).

    [31] J H Li, L M Xu, T Wang et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 29, 1603885(2017).

    [32] T Wu, J N Li, Y T Zou et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew Chem, 132, 4128(2020).

    [33] Y S Shin, Y J Yoon, K T Lee et al. High-performance perovskite light-emitting diodes with surface passivation of CsPbBrxI3–x nanocrystals via antisolvent-triggered ion-exchange. ACS Appl Mater Interfaces, 12, 31582(2020).

    [34] F H Ye, H J Zhang, P Wang et al. Spectral tuning of efficient CsPbBrxCl3–x blue light-emitting diodes via halogen exchange triggered by benzenesulfonates. Chem Mater, 32, 3211(2020).

    [35] X Zheng, S Yuan, J Liu et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett, 5, 793(2020).

    [36] X K Liu, F Gao. Organic–inorganic hybrid ruddlesden–popper perovskites: An emerging paradigm for high-performance light-emitting diodes. J Phys Chem Lett, 9, 2251(2018).

    [37] D Liang, Y Peng, Y Fu et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 10, 6897(2016).

    [38] L Cheng, Y Cao, R Ge et al. Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites. Chin Chem Lett, 28, 29(2017).

    [39] L Ni, U Huynh, A Cheminal et al. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano, 11, 10834(2017).

    [40] F Zhang, H P Lu, J H Tong et al. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ Sci, 13, 1154(2020).

    [41] N N Wang, L Cheng, R Ge et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 10, 699(2016).

    [42] X L Yang, X W Zhang, J X Deng et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 9, 570(2018).

    [43] L Zhang, C J Sun, T W He et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light: Sci Appl, 10, 61(2021).

    [44] Y Z Jiang, C C Qin, M H Cui et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun, 10, 1868(2019).

    [45] Z C Li, Z M Chen, Y C Yang et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat Commun, 10, 1027(2019).

    [46] S Kumar, J Jagielski, S Yakunin et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 10, 9720(2016).

    [47] D N Congreve, M C Weidman, M Seitz et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics, 4, 476(2017).

    [48] Z M Chen, C Y Zhang, X F Jiang et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv Mater, 29, 1603157(2017).

    [49] Q Wang, J Ren, X F Peng et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces, 9, 29901(2017).

    [50] P Vashishtha, M Ng, S B Shivarudraiah et al. High efficiency blue and green light-emitting diodes using ruddlesden–popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater, 31, 83(2019).

    [51] F J Zhang, B Cai, J Z Song et al. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv Funct Mater, 30, 2001732(2020).

    [52] Z M Chu, Y Zhao, F Ma et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat Commun, 11, 4165(2020).

    [53] C H Wang, D B Han, J H Wang et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat Commun, 11, 6428(2020).

    [54] Y C Kim, H J An, D H Kim et al. High-performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents. Adv Funct Mater, 31, 2005553(2021).

    [55] Q Wang, X M Wang, Z Yang et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 10, 5633(2019).

    [56] J Xing, Y B Zhao, M Askerka et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 9, 3541(2018).

    [57] F Zhang, X Zhang, C H Wang et al. Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy, 79, 105486(2021).

    [58] N K Kumawat, A Dey, A Kumar et al. Band gap tuning of CH3NH3Pb(Br1–xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces, 7, 13119(2015).

    [59] N K Kumawat, N Jain, A Dey et al. Quantitative correlation of perovskite film morphology to light emitting diodes efficiency parameters. Adv Funct Mater, 27, 1603219(2017).

    [60] A Sadhanala, S Ahmad, B Zhao et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 15, 6095(2015).

    [61] H P Kim, J Kim, B S Kim et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 5, 1600920(2017).

    [62] F Yuan, C X Ran, L Zhang et al. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Lett, 5, 1062(2020).

    [63] M Karlsson, Z Y Yi, S Reichert et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat Commun, 12, 361(2021).

    [64] H L Wang, X F Zhao, B H Zhang et al. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films. J Mater Chem C, 7, 5596(2019).

    [65] Y J Yoon, Y S Shin, H Jang et al. Highly stable bulk perovskite for blue LEDs with anion-exchange method. Nano Lett, 21, 3473(2021).

    [66] L Cheng, C Yi, Y F Tong et al. Halide homogenization for high-performance blue perovskite electroluminescence. Research, 2020, 1(2020).

    [67] C H Jang, A K Harit, S Lee et al. Sky-blue-emissive perovskite light-emitting diodes: Crystal growth and interfacial control using conjugated polyelectrolytes as a hole-transporting layer. ACS Nano, 14, 13246(2020).

    [68] C Y Zhang, Q Wan, B Wang et al. Surface ligand engineering toward brightly luminescent and stable cesium lead halide perovskite nanoplatelets for efficient blue-light-emitting diodes. J Phys Chem C, 123, 26161(2019).

    [69] Y Jin, Z K Wang, S Yuan et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv Funct Mater, 30, 1908339(2020).

    [70] C H Bi, Z W Yao, X J Sun et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv Mater, 33, 2006722(2021).

    [71] S Yuan, Z K Wang, L X Xiao et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater, 31, 1904319(2019).

    [72] M K Gangishetty, S C Hou, Q M Quan et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater, 30, 1706226(2018).

    [73] Y S Shin, Y J Yoon, J Heo et al. Functionalized PFN-X (X = Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes. ACS Appl Mater Interfaces, 12, 35740(2020).

    [74] K H Wang, Y D Peng, J Ge et al. Efficient and color-tunable quasi-2D CsPbBrxCl3–x perovskite blue light-emitting diodes. ACS Photonics, 6, 667(2019).

    [75] Z W Ren, X T Xiao, R M Ma et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater, 29, 1905339(2019).

    [76] U S Bhansali, H P Jia, M A Q Lopez et al. Controlling the carrier recombination zone for improved color stability in a two-dopant fluorophore/phosphor white organic light-emitting diode. Appl Phys Lett, 94, 203501(2009).

    [77] J L Yang, B D Siempelkamp, E Mosconi et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater, 27, 4229(2015).

    [78] L Q Zhang, X L Yang, Q Jiang et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun, 8, 15640(2017).

    [79] C M Sutter-Fella, D W Miller, Q P Ngo et al. Band tailing and deep defect states in CH3NH3Pb(I1–xBrx)3 perovskites as revealed by sub-bandgap photocurrent. ACS Energy Lett, 2, 709(2017).

    [80] T Chiba, S Ishikawa, J Sato et al. Blue perovskite nanocrystal light-emitting devices via the ligand exchange with adamantane diamine. Adv Opt Mater, 8, 2000289(2020).

    [81] R Shwetharani, H V Vishaka, J Kusuma et al. Green to blue light emitting CsPbBr3 perovskite by ligand exchange and its encapsulation by TiO2 for tandem effect in photovoltaic applications. ACS Appl Nano Mater, 3, 6089(2020).

    [82] Y H Suh, T Kim, J W Choi et al. High-performance CsPbX3 perovskite quantum-dot light-emitting devices via solid-state ligand exchange. ACS Appl Nano Mater, 1, 488(2018).

    [83] N K Kumawat, Z C Yuan, S Bai et al. Metal doping/alloying of cesium lead halide perovskite nanocrystals and their applications in light-emitting diodes with enhanced efficiency and stability. Isr J Chem, 59, 695(2019).

    [84] S C Hou, M K Gangishetty, Q M Quan et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2, 2421(2018).

    [85] F Li, Y Liu, H L Wang et al. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem Mater, 30, 8546(2018).

    [86] W van der Stam, J J Geuchies, T Altantzis et al. Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. J Am Chem Soc, 139, 4087(2017).

    [87] T Chiba, J Sato, S Ishikawa et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices. ACS Appl Mater Interfaces, 12, 53891(2020).

    [88] S Lee, D B Kim, I Hamilton et al. Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv Sci, 5, 1801350(2018).

    [89] X W Gong, O Voznyy, A Jain et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat Mater, 17, 550(2018).

    [90] S M Peng, Q Wei, B Z Wang et al. Suppressing strong exciton-phonon coupling in blue perovskite nanoplatelet solids by binary systems. Angew Chem Int Ed, 59, 22156(2020).

    [91] B Jeong, H Han, Y J Choi et al. All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv Funct Mater, 28, 1706401(2018).

    [92] M Y Ban, Y T Zou, J P H Rivett et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat Commun, 9, 3892(2018).

    [93] C X Zhang, T Shen, D Guo et al. Reviewing and understanding the stability mechanism of halide perovskite solar cells. InfoMat, 2, 1034(2020).

    [94] A Naikaew, P Kumnorkaew, T Supasai et al. Enhancing high humidity stability of quasi-2D perovskite thin films through mixed cation doping and solvent engineering. ChemNanoMat, 5, 1280(2019).

    [95] R Wang, M Mujahid, Y Duan et al. A review of perovskites solar cell stability. Adv Funct Mater, 29, 1808843(2019).

    [96] H S Kim, N G Park. Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Mater, 12, 78(2020).

    [97] Y W Jang, S Lee, K M Yeom et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat Energy, 6, 63(2021).

    [98] A J Knight, J Borchert, R D J Oliver et al. Halide segregation in mixed-halide perovskites: Influence of A-site cations. ACS Energy Lett, 6, 799(2021).

    [99] F Xu, T Y Zhang, G Li et al. Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J Mater Chem A, 5, 11450(2017).

    [100] Y Shen, K C Shen, Y Q Li et al. Interfacial potassium-guided grain growth for efficient deep-blue perovskite light-emitting diodes. Adv Funct Mater, 31, 2006736(2021).

    [101] H Wang, Y Xu, J Wu et al. Bright and color-stable blue-light-emitting diodes based on three-dimensional perovskite polycrystalline films via morphology and interface engineering. J Phys Chem Lett, 11, 1411(2020).

    Yung Jin Yoon, Jin Young Kim. A recent advances of blue perovskite light emitting diodes for next generation displays[J]. Journal of Semiconductors, 2021, 42(10): 101608
    Download Citation