• Journal of Advanced Dielectrics
  • Vol. 12, Issue 6, 2241002 (2022)
Xudong Qi1、*, Kai Li2, Lang Bian3, Enwei Sun3, Limei Zheng4, and Rui Zhang3、**
Author Affiliations
  • 1School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China
  • 2Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, P. R. China
  • 3School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
  • 4School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
  • show less
    DOI: 10.1142/S2010135X22410028 Cite this Article
    Xudong Qi, Kai Li, Lang Bian, Enwei Sun, Limei Zheng, Rui Zhang. Domain structure and dielectric diffusion-relaxation characteristics of ternary Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241002 Copy Citation Text show less
    References

    [1] E. W. Sun, W. W. Cao. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci., 65, 124(2014).

    [2] H. Xu, B. Wang, J. Qi, M. Liu, F. Teng, L. L. Hu, Y. Zhang, C. Q. Qu, M. Feng. Modulation of spin dynamics in Ni/Pb(Mg1/3Nb2/3)-O3–PbTiO3 multiferroic heterostructure. J. Adv. Ceram., 11, 515(2022).

    [3] F. Li, D. B. Lin, Z. B. Chen, Z. X. Cheng, J. L. Wang, C. C. Li, Z. Xu, Q. W. Huang, X. Z. Liao, L. Q. Chen, T. R. Shrout, S. J. Zhang. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater., 17, 349(2018).

    [4] X. J. Wang, Y. Huan, Y. X. Zhu, P. Zhang, W. L. Yang, P. Li, T. Wei, L. T. Li, X. H. Wang. Defect engineering of BCZT-based piezoelectric ceramics with high piezoelectric properties. J. Adv. Ceram., 11, 184(2022).

    [5] D. W. Wang, M. S. Cao, S. J. Zhang. Phase diagram and properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 polycrystalline ceramics. J. Eur. Ceram. Soc., 32, 433(2012).

    [6] D. B. Lin, Z. R. Li, F. Li, Z. Xu, X. Yao. Characterization and piezoelectric thermal stability of PIN–PMN–PT ternary ceramics near the morphotropic phase boundary. J. Alloys. Compd., 489, 115(2010).

    [7] D. B. Lin, H. H. Chen, Z. R. Li, Z. Xu. Phase diagram and dielectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb 2/3)O3-PbTiO3 ceramics. J. Adv. Dielectr., 5, 1550014(2015).

    [8] J. Wu, Y. F. Chang, B. Yang, S. T. Zhang, Y. Sun, F. F. Guo, W. W. Cao. Phase transitional behavior and electrical properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3 )O3–PbTiO3 ternary ceramics. J. Mater. Sci. Mater. Electron., 26, 1874(2015).

    [9] Y. K. Wang, B. J. Fang, S. Zhang, X. L. Lu, J. N. Ding. Design morphotropic phase boundary composition in the Pb(In1/2Nb1/2)-O3 -Pb(Mg1/3Nb2/3)O3-PbTiO3 system and its performance. Phase Transit, 94, 599-615(2021). https://doi.org/10.1080/01411594.2021.1949012

    [10] Y. Hosono, Y. Yamashita, H. Sakamoto, N. Ichinose. Dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)- O3–PbTiO3 ternary ceramic materials near the morphotropic phase boundary. Jpn. J. Appl. Phys., 42, 535(2003).

    [11] X. D. Qi, Y. Zhao, E. W. Sun, J. Du, K. Li, Y. Sun, B. Yang, R. Zhang, W. W. Cao. Large electrostrictive effect and high energy storage performance of Pr3+-doped PIN-PMN-PT multifunctional ceramics in the ergodic relaxor phase. J. Eur. Ceram. Soc., 39, 4060(2019).

    [12] L. E. Cross. Relaxor ferroelectrics: An overview. Ferroelectrics, 151, 305(1994).

    [13] S. T. Misture, S. M. Pilgrim, J. C. Hicks, C. T. Blue, E. A. Payzant, C. R. Hubbard. Measurement of the electrostrictive coefficients of modified lead magnesium niobate using neutron powder diffraction. Appl. Phys. Lett., 72, 1042(1998).

    [14] F. Li, Z. Xu, S. J. Zhang. The effect of polar nanoregions on electromechanical properties of relaxor-PbTiO3 crystals: Extracting from electricfield-induced polarization and strain behaviors. Appl. Phys. Lett., 105, 122904(2014).

    [15] X. D. Qi, E. W. Sun, K. Li, S. Y. Li, R. Zhang, B. Yang, W. W. Cao. Dielectric relaxation properties of [001] c−, [011]c−, and [111] c−oriented 0.24PIN-0.47PMN-0.29PT single crystals. J. Am. Ceram. Soc., 102, 4103(2019).

    [16] D. Viehland, S. J. Jang, L. E. Cross, M. Wuttig. Deviation from Curie–Weiss behavior in relaxor ferroelectrics. Phys. Rev. B, 46, 8003(1992).

    [17] A. A. Bokov, Z. G. Ye. Phenomenological description of dielectric permittivity peak in relaxor ferroelectrics. Solid. State. Commun., 116, 105(2000).

    [18] A. Gruverman, M. Alexe, D. Meier. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun., 10, 1661(2019).

    [19] F. Li, S. J. Zhang, D. Damjanovic, L. Q. Chen, T. R. Shrout. Local structural heterogeneity and electromechanical responses of ferroelectrics: Learning from relaxor ferroelectrics. Adv. Funct. Mater., 28, 1801504(2018).

    [20] L. Y. Yang, H. B. Huang, Z. Z. Xi, L. M. Zheng, S. Q. Xu, G. Tian, Y. Z. Zhai, F. F. Guo, L. P. Kong, Y. G. Wang, W. M. Lü, L. Yuan, M. L. Zhao, H. W. Zheng, G. Liu. Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat. Commun., 13, 2444(2022).

    [21] J. X. Guo, W. W. Chen, H. S. Chen, Y. N. Zhao, F. Dong, W. W. Liu, Y. Zhang. Recent progress in optical control of ferroelectric polarization. Adv. Opt. Mater., 9, 2002146(2021).

    [22] L. L. Wang, S. Zhao, L. Jin, F. Li, Z. Xu. Effects of InNbO4fabrication on perovskite PIN-PMN-PT. J. Am. Ceram. Soc., 97, 3110(2014).

    [23] M. Koyuncu, S. M. Pilgrim. Effects of MgO stoichiometry on the dielectric and mechanical response of Pb(Mg1/3Nb2/3)O3. J. Am. Ceram. Soc., 82, 3075(1999).

    [24] M. Pham-Thi, C. Augier, H. Dammak, P. Gaucher. Fine grains ceramics of PIN–PT, PIN–PMN–PT and PMN–PT systems: Drift of the dielectric constant under high electric field. Ultrasonics, 44, 627(2006).

    [25] R. F. Yue, W. Z. He, F. F. An, J. Yu, G. C. Chen. Preparation of PZT-based piezoceramics with transgranular fracture mode. Ceram. Int., 38, 225(2012).

    [26] S. Jiansirisomboon, K. Songsiri, A. Watcharapasorn, T. Tunkasiri. Mechanical properties and crack growth behavior in poled ferroelectric PMN–PZT ceramics. Curr. Appl. Phys., 6, 299(2006).

    [27] R. H. Kraft, J. F. Molinari. A statistical investigation of the effects of grain boundary properties on transgranular fracture. Acta Materialia, 56, 4739(2008).

    [28] Z. Ren, Z. G. Ye. Effects of Mn-doping on PIN-PMN-PT ceramics with MPB composition. Ferroelectrics, 464, 130(2014).

    [29] A. A. Bokov, Y. H. Bing, W. Chen, Z. G. Ye, S. A. Bogatina, I. P. Raevski, S. I. Raevskaya, E. V. Sahkar. Empirical scaling of the dielectric permittivity peak in relaxor ferroelectrics. Phys. Rev. B, 68, 052102(2003).

    [30] G. Liu, L. P. Kong, Q. Y. Hu, S. J. Zhang. Diffused morphotropic phase boundary in relaxor-PbTiO3 crystals: High piezoelectricity with improved thermal stability. Appl. Phys. Rev., 7, 021405(2020).

    [31] G. Y. Xu, G. Shirane, J. D. Copley, P. M. Gehring. Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3. Phys. Rev. B, 69, 064112(2004).

    [32] I. K. Jeong, T. W. Darling, J. K. Lee, T. Proffen, R. H. Heffner, J. S. Park, K. S. Hong, W. Dmowski, T. Egami. Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. Phys. Rev. Lett., 94, 147602(2005).

    [33] P. M. Gehring, H. Hiraka, C. Stock, S. H. Lee, W. Chen, Z. G. Ye, S. B. Vakhrushev, Z. Chowdhuri. Reassessment of the Burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb(Mg1/3Nb2/3)O3. Phys. Rev. B, 79, 224109(2009).

    [34] M. Roth, E. Mojaev, E. Dul, P. Gemeiner, B. Dkhil. Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3 )O3–xPbTiO3 relaxor ferroelectrics. Phys. Rev. Lett., 98, 265701(2007).

    [35] R. Blinc, V. Laguta, B. Zalar. Field cooled and zero field cooled 207Pb NMR and the local structure of relaxor PbMg 1/3Nb2/3O3. Phys. Rev. Lett., 91, 247601(2003).

    [36] R. Blinc, J. Dolinšek, A. Gregorovič, B. Zalar, C. Filipič, Z. Kutnjak, A. Levstik, R. Pirc. Local polarization distribution and Edwards–Anderson order parameter of relaxor ferroelectrics. Phys. Rev. Lett., 83, 424(1999).

    [37] J. Macutkevic, J. Banys, A. Bussmann-Holder, A. R. Bishop. Origin of polar nanoregions in relaxor ferroelectrics: Nonlinearity, discrete breather formation, and charge transfer. Phys. Rev. B, 83, 184301(2011).

    [38] D. Fu, H. Taniguchi, M. Itoh, S. Koshihara, N. Yamamoto, S. Mori. Relaxor Pb(Mg1/3Nb 2/3)O3: A ferroelectric with multiple inhomogeneities. Phys. Rev. Lett., 103, 207601(2009).

    [39] J. Hlinka. Do we need the ether of polar nanoregions?. J. Adv. Dielectr., 2, 1241006(2012).

    [40] D. Viehland, Y. Chen. Random-field model for ferroelectric domain dynamics and polarization reversal. J. Appl. Phys., 88, 6696(2000).

    [41] H. R. Zeng, H. F. Yu, R. Q. Chu, G. R. Li, H. S. Luo, Q. R. Yin. Spatial inhomogeneity of ferroelectric domain structure in Pb(Mg1/3Nb2/3)O 3−30%PbTiO3 single crystals. Mater. Lett., 59, 238(2005).

    [42] Y. Imry, S. K. Ma. Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett., 35, 1399(1975).

    [43] R. Fisch. Random-field models for relaxor ferroelectric behavior. Phys. Rev. B, 67, 094110(2003).

    [44] D. S. Fu, H. Taniguchi, M. Itoh, S. -ya Koshihara, N. Yamamoto, S. Mori. Relaxor Pb(Mg1/3Nb 2/3)O3: A ferroelectric with multiple inhomogeneities. Phys. Rev. Lett., 103, 207601(2009).

    [45] N Setter. What is a ferroelectric–a materials designer perspective. Ferroelectrics, 500, 164(2016).

    [46] V. V. Shvartsman, A. L. Kholkin. Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3−0.1PbTiO3 single crystals. J. Appl. Phys., 101, 064108(2007).

    Xudong Qi, Kai Li, Lang Bian, Enwei Sun, Limei Zheng, Rui Zhang. Domain structure and dielectric diffusion-relaxation characteristics of ternary Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241002
    Download Citation