• Chinese Journal of Lasers
  • Vol. 48, Issue 7, 0711001 (2021)
Lin Shen, Jilong Tang*, Huimin Jia**, Dengkui Wang, Dan Fang, Xuan Fang, Fengyuan Lin, and Zhipeng Wei
Author Affiliations
  • State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/CJL202148.0711001 Cite this Article Set citation alerts
    Lin Shen, Jilong Tang, Huimin Jia, Dengkui Wang, Dan Fang, Xuan Fang, Fengyuan Lin, Zhipeng Wei. Effect of Rapid Thermal Annealing on Luminescence Properties of InGaAsSb/AlGaAsSb Multiple Quantum Wells Material[J]. Chinese Journal of Lasers, 2021, 48(7): 0711001 Copy Citation Text show less
    References

    [1] Yuan Y, Chai X L, Yang C A et al. 2.75-μm mid-infrared GaSb-based quantum well lasers with quinary alloy barrier[J]. Chinese Journal of Lasers, 47, 0701026(2020).

    [2] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).

    [3] Amtout A, Raghavan S, Rotella P et al. Theoretical modeling and experimental characterization of InAs/lnGaAs dots in a well detector[C]. //The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003, October 27-28, 2003, Tucson, AZ, USA., 923-924(2003).

    [4] Zhang J, Itzler M A, Zbinden H et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light: Science & Applications, 4, e286(2015). http://www.nature.com/articles/lsa201559

    [5] Chao P F, Xu Y C, Liu C H et al. Optimization and preparation of GaN-based LED chip electrode structure[J]. Laser & Optoelectronics Progress, 57, 072301(2020).

    [6] Lin S Y, Tseng C C, Lin W H et al. Room-temperature operation type-II GaSb/GaAs quantum-dot infrared light-emitting diode[J]. Applied Physics Letters, 96, 123503(2010). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5516361

    [7] Rattunde M, Mermelstein C, Schmitz J et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0 μm diode lasers[J]. Applied Physics Letters, 80, 4085-4087(2002). http://scitation.aip.org/content/aip/journal/apl/80/22/10.1063/1.1481979

    [8] Lin C, Grau M, Dier O et al. Low threshold room-temperature continuous-wave operation of 2.24--3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers[J]. Applied Physics Letters, 84, 5088-5090(2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4873222

    [9] Kim J G, Shterengas L, Martinelli R U et al. High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers[J]. Applied Physics Letters, 83, 1926-1928(2003).

    [10] Wang C A, Shiau D A, Calawa D R. Growth and characterization of InAsSb/GaInAsAb/AlGaAsAb/GaSb heterostructures for wafer-bonded thermophotovoltaic devices[J]. Journal of Crystal Growth, 261, 372-378(2004).

    [11] Bründermann E. Widely tunable far-infrared hot-hole semiconductor lasers[M]. //Long-Wavelength Infrared Semiconductor Lasers. Hoboken, NJ, 279-350(2005).

    [12] Choi H K, Walpole J N, Turner G W et al. GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6-W diffraction-limited power[J]. IEEE Photonics Technology Letters, 10, 938-940(1998).

    [13] Garbuzov D Z, Lee H, Khalfin V et al. 2.3--2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers[J]. IEEE Photonics Technology Letters, 11, 794-796(1999).

    [14] Li W, Heroux J B, Shao H et al. High-T0 strain-compensated InGaAsSb-AlGaAsSb quantum-well lasers emitting at 2.43 μm[J]. IEEE Photonics Technology Letters, 17, 531-533(2005).

    [15] Gao X, Wei Z, Zhao F et al. Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy[J]. Scientific Reports, 6, 29112(2016). http://www.ncbi.nlm.nih.gov/pubmed/27381641

    [16] Baranowski M, Syperek M, Kudrawiec R et al. Carrier dynamics between delocalized and localized states in type-II GaAsSb/GaAs quantum wells[J]. Applied Physics Letters, 98, 061910(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5713027

    [17] Baranowski M, Syperek M, Kudrawiec R et al. Carrier dynamics in type-II GaAsSb/GaAs quantum wells[J]. Journal of Physics: Condensed Matter, 24, 185801(2012). http://europepmc.org/abstract/MED/22481185

    [18] Xin H P, Kavanagh K L, Kondow M et al. Effects of rapid thermal annealing on GaInNAs/GaAs multiple quantum wells[J]. Journal of Crystal Growth, 201/202, 419-422(1999).

    [19] Pan Z, Li L H, Zhang W et al. Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 77, 1280-1282(2000).

    [20] Kudrawiec R, Motyka M, Misiewicz J et al. Photoluminescence from as-grown and annealed GaN0.027As0.863Sb0.11/GaAs single quantum wells[J]. Journal of Applied Physics, 98, 063527(2005).

    [21] Kawazu T, Sakaki H. Effects of Sb/As intermixing on optical properties of GaSb type-II quantum dots in GaAs grown by droplet epitaxy[J]. Applied Physics Letters, 97, 261906(2010).

    [22] Ulloa J M, Llorens J M, Alén B et al. High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing[J]. Applied Physics Letters, 101, 253112(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6392764

    [23] Das S K, Das T D, Dhar S. Effect of post-growth anneal on the photoluminescence properties of GaSbBi[J]. Semiconductor Science and Technology, 29, 015003(2014).

    [24] Bugge R, Fimland B O. Annealing effects in InGaAsSb quantum wells with pentenary AlInGaAsSb barriers[J]. Physica Scripta, T126, 15-20(2006). http://adsabs.harvard.edu/abs/2006PhST..126...15B

    [25] Wang Y, Djie H S, Ooi B S. Interdiffusionin InGaAsSb∕AlGaAsSb quantum wells[J]. Journal of Applied Physics, 98, 073508(2005).

    [26] Bergman L, Chen X B, Morrison J L et al. Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders[J]. Journal of Applied Physics, 96, 675-682(2004). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1759076

    [27] Cooper D E, Bajaj J, Newman P R. Photoluminescence spectroscopy of excitons for evaluation of high-quality CdTe crystals[J]. Journal of Crystal Growth, 86, 544-551(1988).

    [28] Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors[J]. Physical Review B, 45, 8989(1992). http://europepmc.org/abstract/MED/10000759

    [29] Gao X, Wei Z P, Fang X et al. Effect of rapid thermal annealing on the optical properties of GaAsSb alloys[J]. Optical Materials Express, 7, 1971-1979(2017). http://www.researchgate.net/publication/317043566_Effect_of_rapid_thermal_annealing_on_the_optical_properties_of_GaAsSb_alloys

    Lin Shen, Jilong Tang, Huimin Jia, Dengkui Wang, Dan Fang, Xuan Fang, Fengyuan Lin, Zhipeng Wei. Effect of Rapid Thermal Annealing on Luminescence Properties of InGaAsSb/AlGaAsSb Multiple Quantum Wells Material[J]. Chinese Journal of Lasers, 2021, 48(7): 0711001
    Download Citation