[1] Liu L F, Feng Y X, Chen D et al. Trace acetylene detection based on mid-infrared laser absorption spectroscopy technology[J]. Chinese Journal of Quantum Electronics, 38, 648-660(2021).
[2] Popa D, Udrea F. Towards integrated mid-infrared gas sensors[J]. Sensors, 19, 2076(2019).
[3] Yu Y J. Study on Theory and Technology of Trace Gas Detection Based on Mid-Infrared Laser Absorption Spectroscopy[D](2017).
[4] Fecko C J, Loparo J J, Tokmakoff A. Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier[J]. Optics Communications, 241, 521-528(2004).
[5] Bedö S, Pollnau M, Lüthy W et al. Saturation of the 2.71 μm laser output in erbium-doped ZBLAN fibers[J]. Optics Communications, 116, 81-86(1995).
[6] Agger S D, Povlsen J H. Emission and absorption cross section of thulium doped silica fibers[J]. Optics Express, 14, 50(2006).
[7] Richards B, Tsang Y, Binks D et al. Efficient ~2 μm Tm3+-doped tellurite fiber laser[J]. Optics Letters, 33, 402(2008).
[8] Wang Y, Yang J L, Huang C Y et al. High power tandem-pumped thulium-doped fiber laser[J]. Optics Express, 23, 2991(2015).
[9] Gomes L, Milanese D, Lousteau J et al. Energy level decay processes in Ho3+-doped tellurite glass relevant to the 3 μm transition[J]. Journal of Applied Physics, 109, 103110(2011).
[10] Lancaster D G, Stevens V J, Michaud-Belleau V et al. Holmium-doped 2.1 μm waveguide chip laser with an output power > 1 W[J]. Optics Express, 23, 32664(2015).
[11] Wolf A A, Skvortsov M I, Kamynin V A et al. All-fiber holmium distributed feedback laser at 2.07 μm[J]. Optics Letters, 44, 3781-3784(2019).
[12] Johnson L F, Guggenheim H J. Laser emission at 3 μm from Dy3+ in BaY2F8[J]. Applied Physics Letters, 23, 96-98(1973).
[13] Majewski M R, Jackson S D. Tunable dysprosium laser[J]. Optics Letters, 41, 4496-4498(2016).
[14] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).
[15] Zhao H Y, Wang R C, Wang X et al. Intense mid-infrared emission at 3.9 µm in Ho3+-doped ZBYA glasses for potential use as a fiber laser[J]. Optics Letters, 45, 4272-4275(2020).
[16] Allain J Y, Monerie M, Poignant H. Erbium-doped fluorozirconate single-mode fibre lasing at 2.71 μm[J]. Electronics Letters, 25, 28-29(1989).
[17] Newburgh G A, Dubinskii M. Power and efficiency scaling of Er:ZBLAN fiber laser[J]. Laser Physics Letters, 18, 095102(2021).
[18] Quimby R S, Miniscalco W J. Continuous-wave lasing on a self-terminating transition[J]. Applied Optics, 28, 14(1989).
[19] Lupei V, Georgescu S, Florea V. On the dynamics of population inversion for 3 μm Er3+ lasers[J]. IEEE Journal of Quantum Electronics, 29, 426-434(1993).
[20] Schneider J. Mid-infrared fluoride fiber lasers in multiple cascade operation[J]. IEEE Photonics Technology Letters, 7, 354-356(1995).
[21] Zhu X S, Jain R K. 5 W diode pumped compact mid-IR fiber laser at2.7 μm[C](2004).
[22] Henderson-Sapir O, Munch J, Ottaway D J. New energy-transfer upconversion process in Er3+: ZBLAN mid-infrared fiber lasers[J]. Optics Express, 24, 6869-6883(2016).