• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 10, 3624 (2022)
SUN Qiang, FENG Junzong, JIANG Yonggang, LI Liangjun, and FENG Jian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    SUN Qiang, FENG Junzong, JIANG Yonggang, LI Liangjun, FENG Jian. Research Progress on Nanoscale Network Reinforcement Methods of Silica Aerogels[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3624 Copy Citation Text show less
    References

    [2] GIBIAT V, LEFEUVRE O, WOIGNIER T, et al. Acoustic properties and potential applications of silica aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 244-255.

    [3] ZHAO S Y, STOJANOVIC A, ANGELICA E, et al. Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent- and ion-exchange[J]. Chemical Engineering Journal, 2020, 381: 122421.

    [5] NG S, JELLE B P, SANDBERG L I C, et al. Experimental investigations of aerogel-incorporated ultra-high performance concrete[J]. Construction and Building Materials, 2015, 77: 307-316.

    [6] TALEBI Z, SOLTANI P, HABIBI N, et al. Silica aerogel/polyester blankets for efficient sound absorption in buildings[J]. Construction and Building Materials, 2019, 220: 76-89.

    [7] CHEN Y X, HENDRIX Y, SCHOLLBACH K, et al. A silica aerogel synthesized from olivine and its application as a photocatalytic support[J]. Construction and Building Materials, 2020, 248: 118709.

    [8] MALEKI H. Recent advances in aerogels for environmental remediation applications: a review[J]. Chemical Engineering Journal, 2016, 300: 98-118.

    [9] ULKER Z, ERKEY C. An emerging platform for drug delivery: aerogel based systems[J]. Journal of Controlled Release, 2014, 177: 51-63.

    [10] SHIN D, KIM J, KIM C, et al. Scalable variable-index elasto-optic metamaterials for macroscopic optical components and devices[J]. Nature Communications, 2017, 8: 16090.

    [11] PRAKASH S S, BRINKER C J, HURD A J. Silica aerogel films at ambient pressure[J]. Journal of Non-Crystalline Solids, 1995, 190(3): 264-275.

    [12] ZHANG G H, DASS A, RAWASHDEH A M M, et al. Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization[J]. Journal of Non-Crystalline Solids, 2004, 350: 152-164.

    [13] JIANG H T, LU Y L, HUANG W C, et al. Microstructural evolution and mechanical properties of the semisolid Al-4Cu-Mg alloy[J]. Materials Characterization, 2003, 51(1): 1-10.

    [15] MULDER C A M, VAN LIEROP J G, FRENS G. Densification of SiO2-xerogels to glass by Ostwald ripening[J]. Journal of Non-Crystalline Solids, 1986, 82(1/2/3): 92-96.

    [16] HREID S, NILSEN E, RANUM V, et al. Thermal and temporal aging of two step acid-base catalyzed silica gels in water/ethanol solutions[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1/2/3): 153-157.

    [17] VENKATESWARA RAO A, PARVATHY N N. Effect of gel parameters on monolithicity and density of silica aerogels[J]. Journal of Materials Science, 1993, 28(11): 3021-3026.

    [18] WOIGNIER T, PHALIPPOU J, HDACH H, et al. Evolution of mechanical properties during the alcogel-aerogel-glass process[J]. Journal of Non-Crystalline Solids, 1992, 147/148: 672-680.

    [20] YUAN B, DING S Q, WANG D D, et al. Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming[J]. Materials Letters, 2012, 75: 204-206.

    [21] ZHANG H X, HE X D, HE F. Microstructure and physicochemical properties of ambient-dried SiO2 aerogels with K2Ti6O13 whisker additive[J]. Journal of Alloys and Compounds, 2009, 472(1/2): 194-197.

    [22] WANG J, KUHN J, LU X. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers[J]. Journal of Non-Crystalline Solids, 1995, 186: 296-300.

    [23] LEE D, STEVENS P C, ZENG S Q, et al. Thermal characterization of carbon-opacified silica aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 285-290.

    [24] MULIK S, SOTIRIOU-LEVENTIS C, CHURU G, et al. Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization[J]. Chemistry of Materials, 2008, 20(15): 5035-5046.

    [25] KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review[J]. Advances in Colloid and Interface Science, 2020, 276: 102101.

    [27] GUO H Q, MEADOR M A B, MCCORKLE L, et al. Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5422-5429.

    [28] LEVENTIS N, SOTIRIOU-LEVENTIS C, ZHANG G H, et al. Nanoengineering strong silica aerogels[J]. Nano Letters, 2002, 2(9): 957-960.

    [29] MA H N, WANG B M, HAN J N, et al. Synthesis and physico-chemical properties of poly (methylmethacrylate)-modified silica aerogels by ambient pressure drying[J]. Nanoscience and Nanotechnology Letters, 2015, 7(11): 930-938.

    [30] MEADOR M A B, FABRIZIO E F, ILHAN F, et al. Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials[J]. Chemistry of Materials, 2005, 17(5): 1085-1098.

    [31] ILHAN F, FABRIZIO E F, MCCORKLE L, et al. Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica[J]. Journal of Materials Chemistry, 2006, 16(29): 3046.

    [32] CAPADONA L A, MEADOR M A B, ALUNNI A, et al. Flexible, low-density polymer crosslinked silica aerogels[J]. Polymer, 2006, 47(16): 5754-5761.

    [33] SHAO Z D, WU G Y, CHENG X, et al. Rapid synthesis of amine cross-linked epoxy and methyl co-modified silica aerogels by ambient pressure drying[J]. Journal of Non-Crystalline Solids, 2012, 358(18/19): 2612-2615.

    [35] JIANG L, KATO K, MAYUMI K, et al. One-pot synthesis and characterization of polyrotaxane-silica hybrid aerogel[J]. ACS Macro Letters, 2017, 6(3): 281-286.

    [36] MALEKI H, MONTES S, HAYATI-ROODBARI N, et al. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure-an approach towards 3D printing of aerogels[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22718-22730.

    [37] WANG L K, FENG J Z, JIANG Y G, et al. Polyvinylmethyldimethoxysilane reinforced methyltrimethoxysilane based silica aerogels for thermal insulation with super-high specific surface area[J]. Materials Letters, 2019, 256: 126644.

    [38] REZAEI S, JALALI A, ZOLALI A M, et al. Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure[J]. Journal of Colloid and Interface Science, 2019, 548: 206-216.

    [39] ZU G Q, SHIMIZU T, KANAMORI K, et al. Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying[J]. ACS Nano, 2018, 12(1): 521-532.

    [40] ZU G Q, KANAMORI K, MAENO A, et al. Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors[J]. Angewandte Chemie (International Ed in English), 2018, 57(31): 9722-9727.

    [41] ZU G, KANAMORI K, SHIMIZU T, et al. Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators[J]. Chemistry of Materials, 2018, 30(8): 2759-2770.

    [42] REZAEI S, ZOLALI A M, JALALI A, et al. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor[J]. Journal of Colloid and Interface Science, 2020, 561: 890-901.

    [43] SADEKAR A G, MAHADIK S S, BANG A N, et al. From ‘green’ aerogels to porous graphite by emulsion gelation of acrylonitrile[J]. Chemistry of Materials, 2012, 24(1): 26-47.

    [44] LEE J K, GOULD G L, RHINE W. Polyurea based aerogel for a high performance thermal insulation material[J]. Journal of Sol-Gel Science and Technology, 2009, 49(2): 209-220.

    [45] TAMAKI R, CHOI J, LAINE R M. A polyimide nanocomposite from octa (aminophenyl) silsesquioxane[J]. Chemistry of Materials, 2003, 15(3): 793-797.

    [46] DUAN Y N, JANA S C, REINSEL A M, et al. Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(43): 15362-15371.

    [47] GUO H Q, MEADOR M A B, MCCORKLE L, et al. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 546-552.

    [48] BODAY D J, LOY D A, DEFRIEND K A, et al. Polymer-silica nanocomposite aerogels with enhanced mechanical properties using chemical vapor deposition (CVD) of cyanoacrylates[J]. MRS Proceedings, 2007, 1007: S09.

    [49] BODAY D J, STOVER R J, MURIITHI B, et al. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1364-1369.

    [50] BI H, CHEN I W, LIN T Q, et al. A new tubular graphene form of a tetrahedrally connected cellular structure[J]. Advanced Materials, 2015, 27(39): 5943-5949.

    [51] OBREY K A D, WILSON K V, LOY D A. Enhancing mechanical properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 2011, 357(19/20): 3435-3441.

    SUN Qiang, FENG Junzong, JIANG Yonggang, LI Liangjun, FENG Jian. Research Progress on Nanoscale Network Reinforcement Methods of Silica Aerogels[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3624
    Download Citation