• Photonics Research
  • Vol. 10, Issue 11, 2622 (2022)
Peiwei Lv1, Zhenyang Liu2、4、*, Jinxing Zhao1, Zuping Xiong3, Lijin Wang1, Xu Li2, Zhaosheng Qian3、5、*, and Aiwei Tang1、6、*
Author Affiliations
  • 1Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
  • 2Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
  • 3College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
  • 4e-mail:
  • 5e-mail:
  • 6e-mail:
  • show less
    DOI: 10.1364/PRJ.472419 Cite this Article Set citation alerts
    Peiwei Lv, Zhenyang Liu, Jinxing Zhao, Zuping Xiong, Lijin Wang, Xu Li, Zhaosheng Qian, Aiwei Tang. Solution-processed electroluminescent white-light-emitting devices based on AIE molecules and Cu-In-Zn-S nanocrystals[J]. Photonics Research, 2022, 10(11): 2622 Copy Citation Text show less
    References

    [1] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun., 18, 1740-1741(2001).

    [2] Y. Hong, J. W. Y. Lam, B. Z. Tang. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun., 29, 4332-4353(2009).

    [3] Z. Chang, Y. Jiang, B. He, J. Chen, Z. Yang, P. Lu, H. S. Kwok, Z. Zhao, H. Qiu, B. Z. Tang. Aggregation-enhanced emission and efficient electroluminescence of tetraphenylethene-cored luminogens. Chem. Commun., 49, 594-596(2013).

    [4] J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, B. Z. Tang. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater., 26, 5429-5479(2014).

    [5] J. Guo, X.-L. Li, H. Nie, W. Luo, S. Gan, S. Hu, R. Hu, A. Qin, Z. Zhao, S.-J. Su, B. Z. Tang. Achieving high-performance nondoped OLEDs with extremely small efficiency roll-off by combining aggregation-induced emission and thermally activated delayed fluorescence. Adv. Funct. Mater., 27, 1606458(2017).

    [6] J. Huang, Y. Jiang, J. Yang, R. Tang, N. Xie, Q. Li, H. S. Kwok, B. Z. Tang, Z. Li. Construction of efficient blue AIE emitters with triphenylamine and TPE moieties for non-doped OLEDs. J. Mater. Chem. C, 2, 2028-2036(2014).

    [7] B. Chen, B. Liu, J. Zeng, H. Nie, Y. Xiong, J. Zou, H. Ning, Z. Wang, Z. Zhao, B. Z. Tang. Efficient bipolar blue AIEgens for high-performance nondoped blue OLEDs and hybrid white OLEDs. Adv. Funct. Mater., 28, 3623-3631(2018).

    [8] J. Guo, X.-L. Li, H. Nie, W. Luo, R. Hu, A. Qin, Z. Zhao, S.-J. Su, B. Z. Tang. Robust luminescent materials with prominent aggregation-induced emission and thermally activated delayed fluorescence for high-performance organic light-emitting diodes. Chem. Mater., 29, 3623-3631(2017).

    [9] S. Ying, Q. Sun, Y. Dai, D. Yang, X. Qiao, D. Ma. Precise regulation of the emissive layer for ultra-high performance white organic light-emitting diodes in an exciplex forming co-host system. Mater. Chem. Front., 3, 640-649(2019).

    [10] S. Liu, F. Li, Q. Diao, Y. Ma. Aggregation-induced enhanced emission materials for efficient white organic light-emitting devices. Org. Electron., 11, 613-617(2010).

    [11] T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, K. Kim. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics, 5, 176-182(2011).

    [12] N. Zhang, X. Qu, Q. Lyu, K. Wang, X. W. Sun. Highly efficient transparent quantum-dot light-emitting diodes based on inorganic double electron-transport layers. Photon. Res., 9, 1979-1983(2021).

    [13] Y. Zhu, R. Xu, Y. Zhou, Z. Xu, Y. Liu, F. Tian, X. Zheng, F. Ma, R. Alsharafi, H. Hu, T. Guo, T. W. Kim, F. Li. Ultrahighly efficient white quantum dot light-emitting diodes operating at low voltage. Adv. Opt. Mater., 8, 2001479(2020).

    [14] C. Jiang, J. Zou, Y. Liu, C. Song, Z. He, Z. Zhong, J. Wang, H.-L. Yip, J. Peng, Y. Cao. Fully solution-processed tandem white quantum-dot light-emitting diode with an external quantum efficiency exceeding 25%. ACS Nano, 12, 6040-6049(2018).

    [15] P. Lv, X. An, Z. Guan, L. Wang, Z. Zheng, X. Li, Z. Yin, J. Lin, A. Tang. Construction of robust cadmium-free Cu-In-Zn-S nanocrystals and polyfluorene derivatives hybrid emissive layer for stable electroluminescent white light-emitting devices. J. Phys. Chem. Lett., 12, 7113-7119(2021).

    [16] S.-Y. Yoon, J.-H. Kim, K.-H. Kim, C.-Y. Han, J.-H. Jo, D.-Y. Jo, S. Hong, J. Y. Hwang, Y. R. Do, H. Yang. High-efficiency blue and white electroluminescent devices based on non-Cd I-III-VI quantum dots. Nano Energy, 63, 103869(2019).

    [17] Z. Liu, A. Tang, M. Wang, C. Yang, F. Teng. Heating-up synthesis of cadimum-free and color-tunable quaternary and five-component Cu-In-Zn-S-based semiconductor nanocrystals. J. Mater. Chem. C, 3, 10114-10120(2015).

    [18] L. Qian, Y. Zheng, J. Xue, P. H. Holloway. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics, 5, 543-548(2011).

    [19] J. Huang, J.-H. Su, X. Li, M.-K. Lam, K.-M. Fung, H.-H. Fan, K.-W. Cheah, C. H. Chen, H. Tian. Bipolar anthracene derivatives containing hole- and electron-transporting moieties for highly efficient blue electroluminescence devices. J. Mater. Chem., 21, 2957-2964(2011).

    [20] Z. Liu, Z. Guan, X. Li, A. Tang, F. Teng. Rational design and synthesis of highly luminescent multinary Cu-In-Zn-S semiconductor nanocrystals with tailored nanostructures. Adv. Opt. Mater., 8, 1901555(2020).

    [21] A. C. Berends, F. T. Rabouw, F. C. M. Spoor, E. Bladt, F. C. Grozema, A. J. Houtepen, L. D. A. Siebbeles, C. de Mello Donega. Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals. J. Phys. Chem. Lett., 7, 3503-3509(2016).

    [22] A. J. Harvie, M. Booth, R. L. Chantry, N. Hondow, D. M. Kepaptsoglou, Q. M. Ramasse, S. D. Evans, K. Critchley. Observation of compositional domains within individual copper indium sulfide quantum dots. Nanoscale, 8, 16157-16161(2016).

    [23] D. H. Jara, K. G. Stamplecoskie, P. V. Kamat. Two distinct transitions in CuxInS2 quantum dots bandgap versus sub-bandgap excitations in copper-deficient structures. J. Phys. Chem. Lett., 7, 1452-1459(2016).

    [24] M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, N. Gaponik. Concentration dependence of Forster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions. Phys. Rev. B, 83, 115423(2011).

    [25] Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulović. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics, 7, 13-23(2013).

    [26] Z. Liu, K. Zhao, A. Tang, Y. Xie, L. Qian, W. Cao, Y. Yang, Y. Chen, F. Teng. Solution-processed high-efficiency cadmium-free Cu-Zn-In-S-based quantum-dot light-emitting diodes with low turn-on voltage. Org. Electron., 36, 97-102(2016).

    [27] Y. Ye, X. Zheng, D. Chen, Y. Deng, D. Chen, Y. Hao, X. Dai, Y. Jin. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett., 11, 4649-4654(2020).

    [28] F. Montilla, R. Mallavia. On the origin of green emission bands in fluorine-based conjugated polymers. Adv. Funct. Mater., 17, 71-78(2007).

    [29] F. Chen, L. Wang, X. Li, Z. Deng, F. Teng, A. Tang. Solution-processed double-layered hole transport layers for highly-efficient cadmium-free quantum-dot light-emitting diodes. Opt. Express, 28, 6134-6145(2020).

    [30] F. Wang, W. Sun, P. Liu, Z. Wang, J. Zhang, J. Wei, Y. Li, T. Hayat, A. Alsaedi, Z. Tan. Achieving balanced charge injection of blue quantum dot light-emitting diodes through transport layer doping strategies. J. Phys. Chem. Lett., 10, 960-965(2019).

    [31] S. S. S. Shahnawaz, M. R. Nagar, R. A. K. Yadav, S. Gull, D. K. Dubey, J.-H. Jou. Hole-transporting materials for organic light-emitting diodes: an overview. J. Mater. Chem. C, 7, 7144-7158(2019).

    [32] T. Wang, X. Guan, H. Zhang, W. Y. Jio. Exploring electronic and excitonic processes toward efficient deep-red CuInS2/ZnS quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces, 11, 36925-36930(2019).

    Peiwei Lv, Zhenyang Liu, Jinxing Zhao, Zuping Xiong, Lijin Wang, Xu Li, Zhaosheng Qian, Aiwei Tang. Solution-processed electroluminescent white-light-emitting devices based on AIE molecules and Cu-In-Zn-S nanocrystals[J]. Photonics Research, 2022, 10(11): 2622
    Download Citation