• Journal of Innovative Optical Health Sciences
  • Vol. 6, Issue 3, 1350026 (2013)
CUICUI LIU and YUEQING GU*
Author Affiliations
  • Department of Biomedical Engineering School of Life Science and Technology China Pharmaceutical University Nanjing 210009, P. R. China
  • show less
    DOI: 10.1142/s1793545813500260 Cite this Article
    CUICUI LIU, YUEQING GU. NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): 1350026 Copy Citation Text show less
    References

    [1] A. Lupetti, M. M. Welling, E. K. J. Pauwels et al. "Radiolabelled antimicrobial peptides for infection detection," Lancet Infect. Dis. 3(4), 223-229 (2003).

    [2] F. D. Lowy, "Antimicrobial resistance: The example of Staphylococcus aureus," J. Clin. Invest. 111(9), 1265-1273 (2003).

    [3] M. L. Embleton, S. P. Nair, B. D. Cookson et al., "Selective lethal photosensitization of methicillinresistant Staphylococcus aureus using an Ig G-tin (IV) chlorine6 conjugate," J. Antimicrob. Chemother. 50(6), 857-864 (2002).

    [4] X. H. Ning, S. J. Lee, Z. R. Wang et al., "Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity," Nat. Mater. 10, 602-607 (2011).

    [5] A. Lupetti, P. H. Nibbering, Welling et al., "Radiopharmaceuticals: New antimicrobial agents," Trends Biotechnol. 21, 70-73 (2003).

    [6] S. J. Jang, Y. J. Lee, S. Lim et al., "Imaging of a localized bacterial infection with endogenous thymidine kinase using radioisotope-labeled nucleosides," Int. J. Med. Microbiol. 302(2), 101-107 (2012).

    [7] W. M. Leevy, S. T. Gammon, H. Jiang et al., "Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe," J. Am. Chem. Soc. 128(51), 16476-16477 (2006).

    [8] M. Zasloff, "Antimicrobial peptides of multicellular organisms," Nature 415(6870), 389-395 (2002).

    [9] K. Matsuzaki, "Why. How are peptide-lipid interactions utilized for self-defense Magainins and tachyplesins as archetypes," Biochim. Biophys. Acta. 1462, 1-10 (1999).

    [10] E. Guaní-Guerra, T. Santos-Mendoza, S. Lugo- Reyes et al., "Antimicrobial peptides: General overview and clinical implications in human health and disease," Clin. Immunol. 135, 1-11 (2010).

    [11] J. R. Buscombe "The future of infection imaging," Q. J. Nucl. Med. Mol. Imag. 50, 99-103 (2006).

    [12] G. Ferro-Flores, B. E. Ocampo-Garcia, L. Melendez- Alafort, "Development of specific radiopharmaceuticals for infection imaging by targeting infectious micro-organisms," Curr. Pharm. Des. 18(8), 1098- 1106 (2012).

    [13] A. Lupetti, M. M. Welling, E. K. J. Pauwels et al., "Radiolabelled antimicrobial peptides for infection detection," Lancet Infect. Dis. 3(4), 223-229 (2003).

    [14] M. Gandomkar, R. Najafi, M. Shafiei et al., "Clinical evaluation of antimicrobial peptide [99m Tc/ Tricine/HYNIC] ubiquicidin 29-41 as a humanspeci fic infection imaging agent," Nucl. Med. Biol. 36(2), 199-205 (2009).

    [15] L. Sarda-Mantel, A. Saleh-Mghir, M. M. Welling et al., "Evaluation of 99mTc-UBI 29-41 scintigraphy for specific detection of experimental Staphylococcus aureus prosthetic joint infections," Eur. J. Nucl. Med. Mol. Imaging 34(8), 1302-1309 (2007).

    [16] P. H. Nibbering, M. M. Welling, A. Paulusma- Annema et al., "99mTc-Labeled UBI 29-41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus," J. Nucl. Med. 45(2), 321-326 (2004).

    [17] L. Mel-endez-Alafort, A. Nadali, G. Pasut et al., "Detection of sites of infection in mice using 99m Tc-labeled PN2S-PEG conjugated to UBI and 99m Tc-UBI: A comparative biodistribution study," Nucl. Med. Biol. 36(1), 57-64 (2009).

    [18] W. M. Leevy, S. T. Gammon, J. R. Johnson et al., "Noninvasive optical imaging of Staphylococcus aureus bacterial infection in living mice using a bisdipicolylamine- zinc(II) affinity group conjugated to a near-infrared fluorophore," Bioconjug. Chem. 19, 686-692 (2008).

    [19] T. Hamaoka, K. K. Mccully, "Muscle research work with britton chance from in vivo magnetic resonance spectroscopy to near-infrared spectroscopy," J. Innov. Opt. Health Sci. 04(03), 227-237 (2011).

    [20] B. Zhu, E. V. A. M. Sevick-Muraca, "Minimizing excitation light leakage and maximizing measurement sensitivity for molecular imaging with near-infrared fluorescence," J. Innov. Opt. Health Sci. 4(03), 301-307 (2011).

    [21] A. C. Merzagora, M. T. Schultheis, B. Onaral et al. "Functional near-infrared spectroscopy-based assessment of attention impairments after traumatic brain injury," J. Innov. Opt. Health Sci. 4(03), 251-260 (2011).

    [22] W. M. Leevy, N. Serazin, B. D. Smith, "Optical imaging of bacterial infection models," Drug Discov. Today Dis. Models 4(3), 91-97 (2007).

    [23] J. Cao, S. N. Wan, J. M. Tian et al., "Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis," Contrast Media Mol. Imaging 7(4), 390-402 (2012).

    [24] A. F. Radovic-Moreno, T. K. Lu, V. A. Puscasu et al., "Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics," ACS Nano 6(5), 4279-4287 (2012).

    [25] H. Y. Chen, S. S. Cui, Z. Tu et al., "In vivo monitoring of organ-selective distribution of CdHgTe/ SiO2 nanoparticles in mouse model," J. Fluoresc. 22(2), 699-706 (2012).

    [26] L. L. Shan, S. S. Cui, C. L. Du et al., "A paclitaxelconjugated adenovirus vector for targeted drug delivery for tumor therapy," Biomaterials 33(1), 146-162 (2012).

    [27] M. S. Akhtar, J. Iqbal, M. A. Khan et al., "99mTclabeled antimicrobial peptide ubiquicidin (29-41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection," J. Nucl. Med. 45(5), 849-856 (2004).

    [28] P. H. Nibbering, M. M. Welling, P. J. Van den Broek et al., "Radiolabelled antimicrobial peptides for imaging of infections: A review," Nucl. Med. Commun. 19(12), 1117-1122 (1998).

    [29] M. R. Yeaman, N. Y. Yount, "Mechanisms of antimicrobial peptide action and resistance," Pharmacol. Rev. 55(1), 27-55 (2003).

    CUICUI LIU, YUEQING GU. NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): 1350026
    Download Citation