• Acta Optica Sinica
  • Vol. 36, Issue 7, 724001 (2016)
Li Yong*, Zhang Huifang, Fan Tianxin, He Ying, Wang Yan, and Bai Lihua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.0724001 Cite this Article Set citation alerts
    Li Yong, Zhang Huifang, Fan Tianxin, He Ying, Wang Yan, Bai Lihua. Theoretical Analysis of Double Dielectric Loaded Graphene Surface Plasmon Polariton[J]. Acta Optica Sinica, 2016, 36(7): 724001 Copy Citation Text show less
    References

    [1] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3): 131-314.

    [2] Zhang Xu, Wu Yu, Tong Xuan, et al.. Study of surface plasmon polariton waveguide of silver nanowire[J]. Acta Optica Sinica, 2016, 36(1): 0124001.

    [3] Pitarke J M, Silkin V M, Chulkov E V, et al.. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 2007, 70(1): 1.

    [4] Chen Jiajia, Sheng Pengchi, Yang Junfeng, et al.. Study on slow light of surface plasmon waveguide with low loss[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112401.

    [5] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    [6] Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [7] Zhang Y, Tan Y W, Stormer H L, et al.. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

    [8] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    [9] Nair R R, Blake P, Grigorenko A N, et al.. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

    [10] Bonaccorso F, Sun Z, Hasan T, et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

    [11] Christensen J, Manjavacas A, Thongrattanasiri S, et al.. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2011, 6(1): 431-440.

    [12] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

    [13] Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694.

    [14] Zhai Li, Xue Wenrui, Yang Rongcao, et al.. Propagation properties of nano dielectric parallel lines coated with graphene[J]. Acta Optica Sinica, 2015, 35(11): 1123002.

    [15] Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009, 80(24): 245435.

    [16] Koppens F H L, Chang D E, Garcia de Abajo F J. Graphene plasmonics: A platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8): 3370-3377.

    [17] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

    [18] Nikitin A Y, Guinea F, García-Vidal F J, et al.. Edge and waveguide terahertz surface plasmon modes in graphene microribbons[J]. Physical Review B, 2011, 84(16): 161407.

    [19] Forati E, Hanson G W. Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application in switching/demultiplexing[J]. Applied Physics Letters, 2013, 103(13): 133104.

    [20] He S, Zhang X, He Y. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI[J]. Optics Express, 2013, 21(25): 30664-30673.

    [21] Vakil A, Engheta N. One-atom-thick reflectors for surface plasmon polariton surface waves on graphene[J]. Optics Communications, 2012, 285(16): 3428-3430.

    [22] Sun Y, Zheng Z, Cheng J, et al.. Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission[J]. Optics Communications, 2014, 328: 124-128.

    [23] Xu W, Zhu Z H, Liu K, et al.. Dielectric loaded graphene plasmon waveguide[J]. Optics Express, 2015, 23(4): 5147-5153.

    [24] Zheng J, Yu L, He S, et al.. Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate[J]. Scientific Reports, 2015, 5.

    [25] Xu H J, Lu W B, Zhu W, et al.. Efficient manipulation of surface plasmon polariton waves in graphene[J]. Applied Physics Letters, 2012, 100(24): 243110.

    [26] Cao Zhuangqi. Guided wave optics[M]. Beijing: Science Press, 2007: 40-44.

    [27] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 2007, 76(15): 153410.

    CLP Journals

    [1] Sun Bin, Yang Youchang, Wan Meng, Xie Feifeng. Simulation Analysis on Influence of Metal Nanograting on Graphene Filtering[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102401

    Li Yong, Zhang Huifang, Fan Tianxin, He Ying, Wang Yan, Bai Lihua. Theoretical Analysis of Double Dielectric Loaded Graphene Surface Plasmon Polariton[J]. Acta Optica Sinica, 2016, 36(7): 724001
    Download Citation