• Photonics Research
  • Vol. 7, Issue 4, 457 (2019)
Ke Bi1, Daquan Yang1, Jia Chen1, Qingmin Wang1..., Hongya Wu2, Chuwen Lan1,* and Yuping Yang3|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
  • 3School of Science, Minzu University of China, Beijing 100081, China
  • show less
    DOI: 10.1364/PRJ.7.000457 Cite this Article Set citation alerts
    Ke Bi, Daquan Yang, Jia Chen, Qingmin Wang, Hongya Wu, Chuwen Lan, Yuping Yang, "Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials," Photonics Res. 7, 457 (2019) Copy Citation Text show less
    References

    [1] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics, 7, 791-795(2013).

    [2] J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett., 108, 097402(2012).

    [3] A. S. Shorokhov, E. V. Melikgaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances. Nano Lett., 16, 4857-4861(2016).

    [4] P. Albella, R. A. de la Osa, F. Moreno, S. A. Maier. Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photon., 1, 524-529(2014).

    [5] M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melikgaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett., 14, 6488-6492(2014).

    [6] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano, 7, 7824-7832(2013).

    [7] Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’Yanchuk, A. I. Kuznetsov. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photon. Rev., 9, 412-418(2015).

    [8] M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, N. M. Litchinitser. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett., 15, 6261-6266(2015).

    [9] F. Aieta, M. A. Kats, P. Genevet, F. Capasso. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).

    [10] R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, F. Capasso. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. USA, 113, 10473-10478(2016).

    [11] F. Capasso, F. Aieta, M. Khorasaninejad, P. Genevet, R. Devlin. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [12] K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photon., 3, 514-519(2016).

    [13] Y. Yang, I. I. Kravchenko, D. Briggs, J. Valentine. Dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [14] E. Semouchkina, R. Duan, G. Semouchkin, R. Pandey. Sensing based on Fano-type resonance response of all-dielectric metamaterials. Sensors, 15, 9344-9359(2015).

    [15] Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, K. Xu. Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface. J. Phys. Chem. C, 20, 47-50(2015).

    [16] P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, J. Valentine. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photon., 2, 692-698(2015).

    [17] P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett., 104, 171102(2014).

    [18] S. Krishnamurthy, B. Slovick, Z. G. Yu, M. Berding. Perfect dielectric-metamaterial reflector. Phys. Rev. B, 88, 5514-5518(2013).

    [19] C. Y. Yang, J. H. Yang, Z. Y. Yang, Z. X. Zhou, M. G. Sun, V. E. Babicheva, K. P. Chen. Nonradiating silicon nanoantenna metasurfaces as narrow-band absorbers. ACS Photon., 5, 2596-2601(2018).

    [20] H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor. A metamaterial solid-state terahertz phase modulator. Nat. Photonics, 3, 148-151(2009).

    [21] M. Choi, S. H. Lee, Y. Kim, S. B. SKang, J. Shim, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, B. Min. A terahertz metamaterial with unnaturally high refractive index. Nature, 470, 369-373(2011).

    [22] H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [23] S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys. Rev. B, 80, 153103(2009).

    [24] R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang. Sharp Fano resonances in THz metamaterials. Opt. Express, 19, 6312-6319(2011).

    [25] T. Hu, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt. Highly-flexible wide angle of incidence terahertz metamaterial absorber. Phys. Rev. B, 78, 1879-1882(2008).

    [26] L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci. Appl., 4, e324(2015).

    [27] L. Liu, X. Zhang, K. Mitchell, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, S. Zhang. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 26, 5031-5036(2014).

    [28] X. Zhang, Z. Tian, W. Yu, J. Gu, S. Zhang, J. Han, W. Zhang. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater., 25, 4567-4572(2013).

    [29] H. Xu, K. Bi, Y. Hao, J. Zhang, J. Xu, J. Dai, K. Xu, J. Zhou. Switchable complementary diamond-ring-shaped metasurface for radome application. IEEE Antennas Wireless Propag. Lett., 17, 2494-2497(2018).

    [30] X. Wang, Y. Cui, T. Li, M. Lei, J. Li, Z. Wei. Recent advances in the functional 2D photonic and optoelectronic devices. Adv. Opt. Mater., 7, 1801274(2018).

    [31] Q. Wang, X. Li, L. Wu, P. Lu, Z. Di. Electronic and interface properties in graphene oxide/hydrogen-passivated Ge heterostructure. Phys. Status Solidi (RRL), 13, 1800461(2019).

    [32] Y. Yang, B. Cui, Z. Geng, S. Feng. Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating. Appl. Phys. Lett., 106, 111106(2015).

    [33] H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, P. Mounaix. Tunable terahertz metamaterials with negative permeability. Phys. Rev. B, 79, 241108(2009).

    [34] I. V. Shadrivov, K. Fan, W. J. Padilla, X. Liu. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt. Express, 25, 191-201(2017).

    [35] C. Ouyang, C. Hu, H. Zhang, J. Han, J. Gu, M. Wei, Q. Wang, Q. Xu, W. Zhang, X. Zhang. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime. Photon. Res., 6, 24-29(2017).

    [36] Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, M. Hong. Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photon., 3, 1010-1018(2016).

    [37] D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, S. Sriram. Terahertz magnetic mirror realized with dielectric resonator antennas. Adv. Mater., 27, 7137-7144(2015).

    [38] H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, P. Mounaix. Resonant magnetic response of TiO2 microspheres at terahertz frequencies. Appl. Phys. Lett., 100, 061117(2012).

    [39] J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, F. Capasso. Plasmonic mode engineering with templated self-assembled nanoclusters. Nano Lett., 12, 5318-5324(2012).

    [40] J. Gao, C. Lan, Q. Zhao, B. Li, J. Zhou. Experimental realization of Mie-resonance terahertz absorber by self-assembly method. Opt. Express, 26, 13001-13011(2018).

    [41] M. Walther, A. Ortner, H. Meier, U. Loffelmann, P. J. Smith, J. G. Korvink. Terahertz metamaterials fabricated by inkjet printing. Appl. Phys. Lett., 95, 251107(2009).

    [42] K. Takano, T. Kawabata, C. F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R. P. Pan, C. L. Pan, M. Hangyo. Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer. Appl. Phys. Express, 3, 016701(2010).

    [43] M. S. Wheeler, J. S. Aitchison, M. Mojahedi. Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters. J. Opt. Soc. Am. B, 27, 1083-1091(2010).

    [44] M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, S. A. Maier. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun., 6, 7915(2015).

    [45] J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, G. W. Yang. Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers. Nat. Commun., 6, 7042(2015).

    [46] B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alu, Y. S. Kivshar. Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances. ACS Photon., 2, 724-729(2015).

    [47] J. Sun, L. Kang, R. Wang, L. Liu, L. Sun, J. Zhou. Low loss negative refraction metamaterial using a close arrangement of split-ring resonator arrays. New J. Phys., 12, 083020(2010).

    [48] G. Zhang, Q. Liao, Z. Zhang, Q. Liang, Y. Zhao, X. Zheng, Y. Zhang. Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci., 3, 1500257(2016).

    [49] K. Bi, M. Bi, Y. Hao, W. Luo, W. Cai, X. Wang, Y. Huang. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy, 51, 513-523(2018).

    CLP Journals

    [1] Hao Sun, Yuze Hu, Yuhua Tang, Jie You, Junhu Zhou, Hengzhu Liu, Xin Zheng, "Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices," Photonics Res. 8, 263 (2020)

    Ke Bi, Daquan Yang, Jia Chen, Qingmin Wang, Hongya Wu, Chuwen Lan, Yuping Yang, "Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials," Photonics Res. 7, 457 (2019)
    Download Citation