• Journal of Infrared and Millimeter Waves
  • Vol. 35, Issue 6, 646 (2016)
YAO Lu-Chi1、2、*, ZHOU Xiao-Hao1, and CHEN Xiao-Shuang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2016.06.002 Cite this Article
    YAO Lu-Chi, ZHOU Xiao-Hao, CHEN Xiao-Shuang. Hybrid functional calculation of electronic structure of InAs/GaSb superlattice in (111) orientation[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 646 Copy Citation Text show less
    References

    [1] SaHalasz G A, Tsu R, Esaki L. A new semiconductor superlattice [J]. Applied Physics Letters, 1977, 30(12): 651-653.

    [2] Rogalski A. Material consideration for third generation infrared photon detectors [J]. Infrared Physics and Technology, 2007, 50(23): 240-252.

    [3] Johnson H J, Samoska L A, Gossard A C, et al. Electrical and optical properties of infrared photodiodes using the InAs/Ga1xInxSb superlattice in heterojuntions with GaSb[J]. Journal of Applied Physics, 1996, 80(2):1116-1127.

    [6] Plis E, Klein B, Myers S, et al. TypeII InAs/GaSb strained layer superlattices grown on GaSb (111)B substrate [J]. Journal of Vacuum Science & Technology B, 2013, 31(3): 03C123.

    [7] Bastard G. Theoretical investigations of superlattice bandstructure in the envelopefunction approximation [J]. Physical Reviews B, 1982, 25(12): 7584-7597.

    [8] Wei Y J, Razeghi M. Modeling of typeII InAs/GaSb superlattices using an empirical tightbinding method and interface engineering [J]. Physical Reviews B 2004, 69(8): 085316.

    [9] Wang J W, Zhang Y. Bandgap corrected density functional theory calculations for InAs/GaSb type II superlattices [J]. Journal of Applied Physics, 2014, 116(21): 214301.

    [10] Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields [J]. The Journal of Physical Chemisty, 1994, 98(45): 11623-11627.

    [11] Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model [J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.

    [12] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential [J]. The Journal of Chemical Physics, 2003, 118(18):8207.

    [13] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18):3865.

    [14] Perdew J P, Ruzsinszky A, Csonka G I, et al. Restoring the densitygradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2009, 100(13):136406.

    [15] Kresse G, Furthmüller J. Efficiency of abinitio total energy calculations for metals and semiconductors using a planewave basis set [J]. Computational Materials Science, 1996, 6(1):15.

    [16] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a planewave basis set [J]. Physical Review B, 1996, 54(16):11169.

    [17] Blchl P E. Projector augmentedwave method [J]. Physical Review B, 1994, 50:17953.

    [18] Hinuma Y, Grüneis A, Kresse G, et al. Band alignment of semiconductors from densityfunctional theoryand manybody perturbation theory [J]. Physical Review B, 2014, 90:155405.

    YAO Lu-Chi, ZHOU Xiao-Hao, CHEN Xiao-Shuang. Hybrid functional calculation of electronic structure of InAs/GaSb superlattice in (111) orientation[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 646
    Download Citation