• Laser & Optoelectronics Progress
  • Vol. 54, Issue 7, 70006 (2017)
Ma Jian, Yu Haihu, Xiong Jiaguo, and Zheng Yu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.070006 Cite this Article Set citation alerts
    Ma Jian, Yu Haihu, Xiong Jiaguo, Zheng Yu. Research Progress of Photonic Crystal Fiber Sensors[J]. Laser & Optoelectronics Progress, 2017, 54(7): 70006 Copy Citation Text show less
    References

    [1] Knight J. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847-851.

    [2] Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.

    [3] Russell P. Photonic-crystal fibers[J]. Journal of Lightwave Technology, 2006, 24(12): 5729-2749.

    [4] Wang Y M, Zhao Y H, Nelson J S, et al. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber[J]. Optics Letters, 2003, 28(3): 182-184.

    [5] Humbert G, Wadsworth W J, Leon-Sava S G, et al. Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre[J]. Optics Express, 2006, 14(4): 1596-1603.

    [6] Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Optics Express, 2004, 12(10): 2027-2032.

    [7] Ni Y, Zhang L, An L, et al. Dual-core photonic crystal fiber for dispersion compensation[J]. IEEE Photonics Technology Letters, 2004, 16(6): 1516-1518.

    [8] Gérome F, Auguste J L, Blondy J M. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber[J].Optics Letters, 2004, 29(23): 2725-2727.

    [9] Schmidt O A, Garbos M K, Euser T G, et al. Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 2012, 109(2): 024502.

    [10] Russell P, Culverhouse D, Farahi F. Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers[J]. IEEE Journal of Quantum Electronics, 1991, 27(3): 836-842.

    [11] Knight J C, Birks T A, Russell P, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.

    [12] Knight J C, Broeng J, Birks T A, et al. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476-1478.

    [13] Liu Deming, Sun Junqiang, Lu Ping, et al. Fiber optics[M]. Beijing: Science Press, 2008: 213-216.

    [14] Rota-Rodrigo S, Ana M R P, Bravo M, et al. An in-reflection strain sensing head based on a Hi-Bi photonic crystal fiber[J]. Sensors, 2013, 13(7): 8095-8102.

    [15] Qureshi K K, Liu Z Y, Tamb H Y, et al. A strain sensor based on in-line fiber Mach-Zehnder interferometer in twin-core photonic crystal fiber[J]. Optics Communications, 2013, 309(22): 68-70.

    [16] Ji Yushen, Fu Guangwei, Fu Xinghu, et al. Sensing characteristics of Mach-Zehnder interferometer based on the fused tapered photonic crystal fiber sensor[J]. Acta Optica Sinica, 2013, 33(10): 1006005.

    [17] Noor M, Rajan G, Peng G D. Microstructured fiber sealed-void interferometric humidity sensor[J]. IEEE Sensors Journal, 2014, 14(4): 1154-1159.

    [18] Peng W, Zhang X P, Liu Y, et al. Temperature characteristics of a core-mode interferometer based on a dual-core photonic crystal fiber[J]. Applied Physics B, 2014, 116(1): 21-26.

    [19] Gong H P, Song H F, Zhang S L, et al. Curvature sensor based on hollow-core photonic crystal fiber Sagnac interferometer[J]. IEEE Sensors Journal, 2014, 14(3): 777-780.

    [20] Yang Yuanhong, Wang Huan, Yang Fuling, et al. Polarization-maintaining photonic crystal fiber hydrogen sensor based on Sagnac interferometer[J]. Acta Optica Sinica, 2014, 34(8): 0806004.

    [21] Liu Feng, Feng Xiaolong, Guo Xuan, et al. Research on the bending sensing characteristics of PM-PCF based on intermodal interference[J]. Chinese J Lasers, 2015, 42(9): 0905005.

    [22] Dash J N, Jha R. Inline microcavity-based PCF interferometer for refractive index and temperature sensing[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1325-1328.

    [23] Dash J N, Jha R. PCF modal interferometer based on macrobending for refractive index sensing[J]. IEEE Sensors Journal, 2015, 15(9): 5291-5295.

    [24] Yu H H, Zheng Y, Guo H Y, et al. Spectral absorption gas sensor based on anti-resonant reflecting optical waveguide[J]. Photonic Sensors, 2014, 4(2): 128-131.

    [25] Kassani S H, Khazaeinezhad R, Jung Y M, et al. Suspended ring-core photonic crystal fiber gas sensor with high sensitivity and fast response[J]. IEEE Photonics Journal, 2015, 7(1): 14927918.

    [26] Feng Qiaoling, Jiang Meng, Wang Xuefeng, et al. High sensitivity ammonia gas detection with hollow-core photonic bandgap fibers reference gas cavity[J]. Chinese J Lasers, 2016, 43(3): 0305001.

    [27] Malinin A V, Skibina Y S, Mikhailova N A, et al. Biological sensor based on a hollow-core photonic crystal fiber[J]. Technical Physics Letters, 2010, 36(4): 362-364.

    [28] Rabah J, Mansaray A, Wynne R, et al. Human immunoglobulin class G (IgG) antibody detection with photonic crystal fiber[J]. Journal of Lightwave Technology, 2016, 34(4): 1398-1404.

    [29] Yu Y Q, Li X J, Hong X M, et al. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling[J]. Optics Express, 2010, 18(15): 15383-15388.

    [30] Thakur H V, Nalawade S M, Gupta S, et al. Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection[J]. Applied Physics Letters, 2011, 99(16): 161101.

    [31] Zu P, Chan C C, Gong T X, et al. Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid[J]. Applied Physics Letters, 2012, 101(24): 241118.

    [32] Peng Zhaozhuang, Wang Li, Huo Mingchao, et al. Research of photonic crystal fiber temperature sensor with liquid filling[J]. Laser & Optoelectronics Progress, 2016, 53(4): 040605.

    [33] Yu H H, Cheng X, Ma J, et al. Fabrication of Kagomé hollow-core photonic crystal fiber for temperature sensing[C]. Asia-Pacific Optical Sensors Conference, 2016: Th4A.60.

    [34] Fujii T, Taguchi Y, Saiki T, et al. A fusion-spliced near-field optical fiber probe using photonic crystal fiber for nanoscale thermometry based on fluorescence-lifetime measurement of quantum dots[J]. Sensors, 2011, 11(9): 8358-8369.

    [35] Xiao R, Rong Z, Pang Y F, et al. Effects of structure parameters on the sensor performance of photonic crystal fiber[J]. Optics Communications, 2015, 336: 116-119.

    [36] Ghenuche P, Rigneault H, Wenger J. Hollow-core photonic crystal fiber probe for remote fluorescence sensing with single molecule sensitivity[J]. Optics Express, 2012, 20(27): 28379-28387.

    [37] Yin X J, Wang W Y, Yu Y Q, et al. Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber[J]. IEEE Sensors Journal, 2015, 15(5): 2810-2813.

    [38] Dash J N, Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1092-1095.

    [39] Otupiri R, Akowuah E K, Haxha S, et al. A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor[J]. IEEE Photonics Journal, 2014, 6(4): 14445688.

    [40] Al Mamun A, Islam A, Alam M S. A square lattice photonic crystal fiber based surface plasmon resonance sensor with high sensitivity[C]. International Conference on Electrical Engineering and Information and Communication Technology (ICEEICT), 2014: 14663313.

    [41] Yu H H, Ma J, Li X F, et al. Numerical analysis of a novel refractive index and temperature sensor based on a Kagomé hollow-core photonic crystal fiber[C]. IEEE Sensors Conference, 2016: 16597299.

    [42] Wong W C, Chan C C, Boo J L, et al. Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4602107.

    [43] Lu Y, Wang M T, Hao C J, et al. Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid[J]. IEEE Photonics Journal, 2014, 6(3): 6801307.

    [44] Lu Y, Yang X C, Wang M T, et al. Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires[J]. Electronics Letters, 2015, 51(21): 1675-1677.

    [45] Dinish U S, Fu C Y, Soh K S, et al. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber[J]. Biosensors and Bioelectronics, 2012, 33(1): 293-298.

    [46] Wang Wei, Chen Pan, Liu Binghong, et al. Research on hollow fiber raman detection system for edible and fried oils[J]. Acta Optica Sinica, 2015, 35(9): 0906003.

    [47] Khetani A, Momenpour A, Alarcon E I, et al. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS)[J]. Biomedical Optics Express, 205, 6(11): 4599-4609.

    [48] Pinkhasova P, Chen P H, Kanka J, et al. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform[J]. Applied Physics Letters, 2015, 106(7): 71106.

    [49] Gong T X, Zhang N, Kong K V, et al. Rapid SERS monitoring of lipid-peroxidation-derived protein modifications in cells using photonic crystal fiber sensor[J]. Journal of Biophotonics, 2016, 9(1/2): 32-37.

    [50] Yang X, Zhang A Y, Wheeler D A, et al. Direct molecule-specific glucose detection by raman spectroscopy based on photonic crystal fiber[J]. Analytical and Bioanalytical Chemistry, 2012, 402(2): 687-691.

    [51] Zhang N, Humbertc G, Gonga T X, et al. Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing[J]. Sensors and Actuators B: Chemical, 2016, 223: 195-201.

    [52] Zheng S J, Zhu Y N, Krishnaswamy S. Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings[J]. Sensors and Actuators B: Chemical, 2013, 176(1): 264-274.

    [53] Naeem K, Chung Y. Strain and temperature discrimination using PCF bragg-gratings filled with different liquids[C]. Opto-Electronics and Communication Conference and Australian Conference on Optical Fibre Technology, 2014: 14579703.

    [54] Liu S J, LuoM Y, Ji Q. Sensing characteristics of femtosecond laser-induced long period gratings by filling cladding holes in photonic crystal fiber[J]. Journal of Lightwave Technology, 2014, 32(12): 2287-2292.

    [55] Iadicicco A, Campopiano S. Sensing features of long period gratings in hollow core fibers[J]. Sensors, 2015, 15(4): 8009-8019.