• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20220017 (2022)
Shensheng Han1、2 and Chenyu Hu1、2
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 2Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/IRLA20220017 Cite this Article
    Shensheng Han, Chenyu Hu. Review, current status and prospect of researches on information optical imaging (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20220017 Copy Citation Text show less
    References

    [1] C E Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423(1948).

    [2] Blahut R E. Principles Practice of Infmation They[M].US: AddisonWesley Longman Publishing Co., Inc., 1987.

    [3] Barrett H H, Myers K J. Foundations of Image Science[M]. US: John Wiley & Sons, 2013.

    [4] D Gabor. IV light and information. Progress in Optics, 1, 109-153(1961).

    [5] Francia G T Di. Degrees of freedom of an image. JOSA A, 59, 799-804(1969).

    [6] A Ernst. Contributions to the theory of the microscope and the nature of microscopic vision. Archive for Microscopic Anatomy, 9, 413-418(1873).

    [7] D Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell System Technical Journal, 43, 3009-3057(1964).

    [8] Tao Chunkan, Tao Chunkuang, Optical Infmation They[M]. Beijing: Science Press, 1999: 121129. (in Chinese)

    [9] A Stern, B Javidi. Shannon number and information capacity of three-dimensional integral imaging. JOSA A, 21, 1602-1612(2004).

    [10] Micheli E de, G A Viano. Inverse optical imaging viewed as a backward channel communication problem. JOSA A, 26, 1393-1402(2009).

    [11] E Abbe. XV. —The relation of aperture and power in the microscope (continued). Journal of the Royal Microscopical Society, 3, 790-812(1883).

    [12] L Rayleigh. XXXI. Investigations in optics, with special reference to the spectroscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8, 261-274(1879).

    [13] G W King, A G Emslie. Spectroscopy from the point of view of the communication theory. JOSA A, 41, 405-412(1951).

    [14] Francia G T Di. Resolving power and information. JOSA A, 45, 497-501(1955).

    [15] W Lukosz. Optical systems with resolving powers exceeding the classical limit. JOSA A, 56, 1463-1471(1966).

    [16] N J Bershad. Resolution, optical-channel capacity and information theory. JOSA A, 59, 157-163(1969).

    [17] D L Fried. Resolution, signal-to-noise ratio, and measurement precision. JOSA A, 69, 399-406(1979).

    [18] I J Cox, C J R Sheppard. Information capacity and resolution in an optical system. JOSA A, 3, 1152-1158(1986).

    [19] E L Kosarev. Shannon's superresolution limit for signal recovery. Inverse Problems, 6, 55(1990).

    [20] E Narimanov. Resolution limit of label-free far-field microscopy. Advanced Photonics, 1, 056003(2019).

    [21] J L Harris. Resolving power and decision theory. JOSA A, 54, 606-611(1964).

    [22] C Helstrom. The detection and resolution of optical signals. IEEE Transactions on Information Theory, 10, 275-287(1964).

    [23] C Helstrom. Detection and resolution of incoherent objects by a background-limited optical system. JOSA A, 59, 164-175(1969).

    [24] C Helstrom. Resolvability of objects from the standpoint of statistical parameter estimation. JOSA A, 60, 659-666(1970).

    [25] R A Fisher. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222, 309-368(1922).

    [26] L B Lucy. Statistical limits to super resolution. Astronomy and Astrophysics, 261, 706(1992).

    [27] E Bettens, Dyck D Van, Dekker A J Den, et al. Model-based two-object resolution from observations having counting statistics. Ultramicroscopy, 77, 37-48(1999).

    [28] S T Smith. Statistical resolution limits and the complexified cramér-rao bound. IEEE Transactions on Signal Processing, 53, 1597-1609(2005).

    [29] S Ram, E S Ward, R J Ober. Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. Proceedings of the National Academy of Sciences, 103, 4457-4462(2006).

    [30] A Sentenac, C A Guérin, P C Chaumet, et al. Influence of multiple scattering on the resolution of an imaging system: a Cramer-Rao analysis. Optics Express, 15, 1340-1347(2007).

    [31] E Betzig, R J Chichester. Single molecules observed by near-field scanning optical microscopy. Science, 262, 1422-1425(1993).

    [32] M G L Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82-87(2000).

    [33] H K Zhang, X Chen, W Liu, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nature Communications, 10, 1-10(2019).

    [34] Vlaardingerbroek M T, Boer J A. Magic Resonance Imaging: They Practice[M]. New Yk: Springer Science & Business Media, 2013.

    [35] S W Hell, J Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19, 780-782(1994).

    [36] B Neupane, F S Ligler, G Wang. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. Journal of Biomedical Optics, 19, 080901(2014).

    [37] J L Harris. Diffraction and resolving power. JOSA A, 54, 931-936(1964).

    [38] M R Banham, A K Katsaggelos. Digital image restoration. IEEE Signal Processing Magazine, 14, 24-41(1997).

    [39] Wiener N. Extrapolation, Interpolation Smoothing of Stationary Time Series with Engineering Applications[M]. New Yk: John Wiley, 1949.

    [40] E Sekko, G Thomas, A Boukrouche. A deconvolution technique using optimal Wiener filtering and regularization. Signal Processing, 72, 23-32(1999).

    [41] L B Lucy. Resolution limits for deconvolved images. The Astronomical Journal, 104, 1260-1265(1992).

    [42] E Betzig, G H Patterson, R Sougrat, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [43] M J Rust, M Bates, X Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793-796(2006).

    [44] C L Fales, F O Huck, R W Samms. Imaging system design for improved information capacity. Applied Optics, 23, 872-888(1984).

    [45] F O Huck, C L Fales, N Halyo, et al. Image gathering and processing: information and fidelity. JOSA A, 2, 1644-1666(1985).

    [46] F O Huck, C L Fales, J A McCormick, et al. Image-gathering system design for information and fidelity. JOSA A, 5, 285-299(1988).

    [47] R Alter-Gartenberg. Information metric as a design tool for optoelectronic imaging systems. Applied Optics, 39, 1743-1760(2000).

    [48] L Carretero, A Fimia, A Beléndez. Entropy-based study of imaging quality in holographic optical elements. Optics Letters, 19, 1355-1357(1994).

    [49] W C Chou, M A Neifeld, R Xuan. Information-based optical design for binary-valued imagery. Applied Optics, 39, 1731-1742(2000).

    [50] X F Chi, W X Shi, C Y Han, et al. Information-theory based optimizing design methods in sampled-imaging system. Journal of China Institute of Communications, 23, 88-93(2002).

    [51] C Y Han, Y H Yu. Design methods of CCD detection system and the statistical characteristics of sampled targets. Journal of Jilin University (Information Science Edition), 20, 23-26(2002).

    [52] X F Chi, C Y Han, Z D Yi. Matching design methods based on information theory in sampled imaging systems. Acta Optica Sinica, 23, 278-283(2003).

    [53] X F Chi, C Y Han, Z D Yi. Undersampled noise analysis and integral electro-optical design. Opto-Electronic Engineering, 30, 56-59(2003).

    [54] M A Neifeld, A Ashok, P K Baheti. Task-specific information for imaging system analysis. JOSA A, 24, B25-B41(2007).

    [55] M F Duarte, M A Davenport, D Takhar, et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [56] G M Gibson, S D Johnson, M J Padgett. Single-pixel imaging 12 years on: a review. Optics Express, 28, 28190-28208(2020).

    [57] X Yuan, D J Brady, A K Katsaggelos. Snapshot compressive imaging: Theory, algorithms, and applications. IEEE Signal Processing Magazine, 38, 65-88(2021).

    [58] L Gao, J Liang, C Li, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 516, 74-77(2014).

    [59] D Qi, S Zhang, C Yang, et al. Single-shot compressed ultrafast photography: a review. Advanced Photonics, 2, 014003(2020).

    [60] S R P Pavani, M A Thompson, J S Biteen, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proceedings of the National Academy of Sciences, 106, 2995-2999(2009).

    [61] Y Shechtman, S J Sahl, A S Backer, et al. Optimal point spread function design for 3 D imaging. Physical Review Letters, 113, 133902(2014).

    [62] Diezmann A von, Y Shechtman, W E Moerner. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chemical Reviews, 117, 7244-7275(2017).

    [63] Buzug T M. Computed Tomography[M]Springer Hbook of Medical Technology, Heidelberg: Springer, 2011: 311342.

    [64] M Descour, E Dereniak. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. Applied Optics, 34, 4817-4826(1995).

    [65] Ng R, Levoy M, Brédif M, et al. Light field photography with a hheld plenoptic camera[D]. US: Stanfd University, 2005.

    [66] D V Strekalov, A V Sergienko, D N Klyshko, et al. Observation of two-photon ''ghost'' interference and diffraction. Physical Review Letters, 74, 3600(1995).

    [67] T B Pittman, Y H Shih, D V Strekalov, et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429(1995).

    [68] R S Bennink, S J Bentley, R W Boyd, et al. Quantum and classical coincidence imaging. Physical Review Letters, 92, 033601(2004).

    [69] J Cheng, S Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Physical Review Letters, 92, 093903(2004).

    [70] A Gatti, E Brambilla, M Bache, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation. Physical Review Letters Series A. Mathematical and Physical Sciences, 93, 093602(2004).

    [71] C Zhao, W Gong, M Chen, et al. Ghost imaging lidar via sparsity constraints. Applied Physics Letters, 101, 141123(2012).

    [72] B I Erkmen. Computational ghost imaging for remote sensing. JOSA A, 29, 782-789(2012).

    [73] B Sun, M P Edgar, R Bowman, et al. 3 D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [74] W Gong, C Zhao, H Yu, et al. Three-dimensional ghost imaging lidar via sparsity constraint. Scientific Reports, 6, 26133(2016).

    [75] Z Liu, S Tan, J Wu, et al. Spectral camera based on ghost imaging via sparsity constraints. Scientific Reports, 6, 25718(2016).

    [76] Y Wang, J Suo, J Fan, et al. Hyperspectral computational ghost imaging via temporal multiplexing. IEEE Photonics Technology Letters, 28, 288-291(2015).

    [77] D Shi, S Hu, Y Wang. Polarimetric ghost imaging. Optics Letters, 39, 1231-1234(2014).

    [78] C Chu, S Liu, Z Liu, et al. Spectral polarization camera based on ghost imaging via sparsity constraints. Applied Optics, 60, 4632-4638(2021).

    [79] H Yu, R Lu, S Han, et al. Fourier-transform ghost imaging with hard X-rays. Physical Review Letters, 117, 113901(2016).

    [80] D Pelliccia, A Rack, M Scheel, et al. Experimental X-Ray ghost imaging. Physical Review Letters, 117, 113902(2016).

    [81] W Li, Z Tong, K Xiao, et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints. Optica, 6, 1515-1523(2019).

    [82] X Jin, X Y Wang, D Y Du, et al. Progress and prospect of scattering imaging. Laser and Optoelectronics Progress, 58, 1811002(2021).

    [83] D Faccio, A Velten, G Wetzstein. Non-line-of-sight imaging. Nature Reviews Physics, 2, 318-327(2020).

    [84] Mel L, Wolf E. Optical Coherence Quantum Optics[M]. UK: Cambridge University Press, 1995: 4165.

    [85] F Zernike. How I discovered phase contrast. Science, 121, 345-349(1955).

    [86] D Gabor. A new microscopic principle. Nature, 161, 777-778(1948).

    [87] D Gabor. Microscopy by reconstructed wave-fronts. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 197, 454-487(1949).

    [88] J Miao, P Charalambous, J Kirz, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342-344(1999).

    [89] R H Brown, R Q Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27-29(1956).

    [90] M Zhang, Q Wei, X Shen, et al. Lensless Fourier-transform ghost imaging with classical incoherent light. Physical Review A, 75, 021803(2007).

    [91] W Gong, S Han. Phase-retrieval ghost imaging of complex-valued objects. Physical Review A, 82, 023828(2010).

    [92] D J Zhang, Q Tang, T F Wu, et al. Lensless ghost imaging of a phase object with pseudo-thermal light. Applied Physics Letters, 104, 121113(2014).

    [93] X B Song, D Q Xu, H B Wang, et al. Experimental observation of one-dimensional quantum holographic imaging. Applied Physics Letters, 103, 131111(2013).

    [94] L Mandel, E C G Sudarshan, E Wolf. Theory of photoelectric detection of light fluctuations. Proceedings of the Physical Society, 84, 435(1964).

    [95] Mel L, Wolf E. Optical Coherence Quantum Optics[M]. UK: Cambridge University Press, 1995: 438464.

    [96] E D Kolaczyk, R D Nowak. Multiscale likelihood analysis and complexity penalized estimation. The Annals of Statistics, 32, 500-527(2004).

    [97] M Makitalo, A Foi. Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Transactions on Image Processing, 20, 99-109(2010).

    [98] S Han, H Yu, X Shen, et al. A review of ghost imaging via sparsity constraints. Applied Sciences, 8, 1379(2018).

    [99] L Pan, Y Wang, C Deng, et al. Micro-Doppler effect based vibrating object imaging of coherent detection GISC lidar. Optics Express, 29, 43022-43031(2021).

    [100] W L Gong, J F Sun, C J Deng, et al. Research progress on single-pixel imaging Lidar via coherent detection. Laser & Optoelectronics Progress, 58, 1011003(2021).

    [101] M Giglio, M Carpineti, A Vailati. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function \begin{document}$g\left( r \right)$\end{document}. Physical Review Letters, 85, 1416-1419(2000).

    [102] R Cerbino, L Peverini, M A C Potenza, et al. X-ray-scattering information obtained from near-field speckle. Nature Physics, 4, 238-243(2008).

    [103] Z Tan, H Yu, R Lu, et al. Non-locally coded Fourier-transform ghost imaging. Optics Express, 27, 2937-2948(2019).

    [104] R Zhu, H Yu, R Lu, et al. Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints. Optics Express, 26, 2181-2190(2018).

    [105] C Hu, R Zhu, H Yu, et al. Correspondence Fourier-transform ghost imaging. Physical Review A, 103, 043717(2021).

    [106] Compressed Sensing: They Applications[M]. UK: Cambridge University Press, 2012.

    [107] D L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [108] E J Candes, T Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51, 4203-4215(2005).

    [109] E R Li, M L Chen, W L Gong, et al. Mutual information of ghost imaging systems. Acta Optica Sinica, 33, 1211003(2013).

    [110] X Xu, E Li, X Shen, et al. Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization. Chinese Optics Letters, 13, 071101(2015).

    [111] K M Czajkowski, A Pastuszczak, R Kotyński. Single-pixel imaging with Morlet wavelet correlated random patterns. Scientific Reports, 8, 1-8(2018).

    [112] C Hu, Z Tong, Z Liu, et al. Optimization of light fields in ghost imaging using dictionary learning. Optics Express, 27, 28734-28749(2019).

    [113] B Liu, F Wang, C Chen, et al. Self-evolving ghost imaging. Optica, 8, 1340-1349(2021).

    [114] Z Tong, Z Liu, J Wang, et al. Spatial resolution limit of ghost imaging camera via sparsity constraints-break rayleigh's criterion based on the discernibility in high-dimensional light field space. arXiv e-prints, arXiv, 2004.00135(2020).

    [115] J A Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on InformationTheory, 50, 2231-2242(2004).

    [116] Z Tong, Z Liu, C Hu, et al. Preconditioned deconvolution method for high-resolution ghost imaging. Photonics Research, 9, 1069-1077(2021).

    [117] H Chen, J Shi, X Liu, et al. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition. Optics Communications, 413, 269-275(2018).

    [118] X Zhai, Z Cheng, Y Wei, et al. Compressive sensing ghost imaging object detection using generative adversarial networks. Optical Engineering, 58, 013108(2019).

    [119] Y Li, J Shi, L Sun, et al. Single-pixel salient object detection via discrete cosine spectrum acquisition and deep learning. IEEE Photonics Technology Letters, 32, 1381-1384(2020).

    [120] Z Zhang, X Li, S Zheng, et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection. Optics Express, 28, 13269-13278(2020).

    [121] J N Cao, Y H Zuo, H H Wang, et al. Single-pixel neural network object classification of sub-Nyquist ghost imaging. Applied Optics, 60, 9180-9187(2021).

    [122] X F Liu, X R Yao, R M Lan, et al. Edge detection based on gradient ghost imaging. Optics Express, 23, 33802-33811(2015).

    [123] L Wang, L Zou, S Zhao. Edge detection based on subpixel-speckle-shifting ghost imaging. Optics Communications, 407, 181-185(2018).

    [124] S Sun, J H Gu, H Z Lin, et al. Gradual ghost imaging of moving objects by tracking based on cross correlation. Optics Letters, 44, 5594-5597(2019).

    [125] D Yang, C Chang, G Wu, et al. Compressive ghost imaging of the moving object using the low-order moments. Applied Sciences, 10, 7941(2020).

    [126] G Barbastathis, A Ozcan, G Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    [127] Y Rivenson, Y Wu, A Ozcan. Deep learning in holography and coherent imaging. Light: Science & Applications, 8, 1-8(2019).

    CLP Journals

    [1] Zhiyuan Wang, Xuetian Lai, Huichuan Lin, Fuchang Chen, Jun Zeng, Ziyang Chen, Jixiong Pu. Deep learning-based image reconstruction through turbid medium (invited)[J]. Infrared and Laser Engineering, 2022, 51(8): 20220215

    Shensheng Han, Chenyu Hu. Review, current status and prospect of researches on information optical imaging (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20220017
    Download Citation