• Laser & Optoelectronics Progress
  • Vol. 55, Issue 4, 041404 (2018)
Yuncai Zhao*, Huihui Du, Xuchao Shangguan, and Wen He
Author Affiliations
  • School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    DOI: 10.3788/LOP55.041404 Cite this Article Set citation alerts
    Yuncai Zhao, Huihui Du, Xuchao Shangguan, Wen He. Influences of Laser Remelting Trajectories on Microstructures and Properties of Fe-Based Ni/WC Coatings[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041404 Copy Citation Text show less
    Surface morphologies of coatings under different laser remelting trajectories.(a) Dotted; (b) rectangular; (c) parallel; (d) circular
    Fig. 1. Surface morphologies of coatings under different laser remelting trajectories.(a) Dotted; (b) rectangular; (c) parallel; (d) circular
    Micro-morphologies of remelted layers under different laser remelting trajectories. (a) Dotted; (b) rectangular; (c) parallel; (d) circular
    Fig. 2. Micro-morphologies of remelted layers under different laser remelting trajectories. (a) Dotted; (b) rectangular; (c) parallel; (d) circular
    Element content test of coatings under circular laser remelting trajectories. (a) Area; (b) result
    Fig. 3. Element content test of coatings under circular laser remelting trajectories. (a) Area; (b) result
    XRD pattern of cladding surface under circular laser remelting trajectories
    Fig. 4. XRD pattern of cladding surface under circular laser remelting trajectories
    Metallograph of bonding interface between coating and substrate under different remelting trajectories. (a) Dotted; (b) rectangular; (c) parallel; (d) circular
    Fig. 5. Metallograph of bonding interface between coating and substrate under different remelting trajectories. (a) Dotted; (b) rectangular; (c) parallel; (d) circular
    Microhardness of coatings under different remelting trajectories
    Fig. 6. Microhardness of coatings under different remelting trajectories
    Wear loss under different remelting trajectories
    Fig. 7. Wear loss under different remelting trajectories
    SEM images of coatings after dry sliding under different remelting trajectories. (a) Circular; (b) dotted
    Fig. 8. SEM images of coatings after dry sliding under different remelting trajectories. (a) Circular; (b) dotted
    SEM image of parallel scanning trajectory after dry sliding friction
    Fig. 9. SEM image of parallel scanning trajectory after dry sliding friction
    ElementNiCrBSiCFe
    Content8-1215-201.5-31.5-3<0.5Bal.
    Table 1. Chemical compositions of Fe40 Fe-based alloy powder (mass fraction, %)
    ElementNiCrBSiCFeWC
    ContentBal.15-203.0-4.53.5-5.50.5-1.1≤1035
    Table 2. Chemical compositions of Ni60+35WC nickel tungsten carbide powder (mass fraction, %)
    TrajectoryPower /WScanning speed /(mm·min-1)Spot diameter /mmEnergy density /(W·mm-1·s-1)
    Dotted5002001.548
    Rectangular5002001.5144
    Parallel5002001.591
    Circular5002001.597
    Table 3. Process parameters under different laser remelting trajectories
    ParameterNormal load /NRotating speed /(r·min-1)Wear time /sTest temperature /℃
    Value350200180020
    Table 4. Experimental parameters of friction and wear
    TrajectorySample 1Sample 2Sample 3Sample 4Sample 5Average
    Dotted4.3%4.1%4.5%4.2%4.7%4.36%
    Rectangular3.4%3.8%3.1%3.5%3.6%3.48%
    Parallel2.2%2.5%2.7%2.5%2.8%2.54%
    Circular2.0%2.1%2.5%2.6%2.4%2.32%
    Table 5. Surface porosity of coatings under different remelting trajectories
    Yuncai Zhao, Huihui Du, Xuchao Shangguan, Wen He. Influences of Laser Remelting Trajectories on Microstructures and Properties of Fe-Based Ni/WC Coatings[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041404
    Download Citation