• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 2, 131 (2021)
Xiaoyang WANG* and Lijuan LIU
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.02.001 Cite this Article
    WANG Xiaoyang, LIU Lijuan. KBe2BO3F2 crystal and all-solid-state deep ultraviolet laser[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 131 Copy Citation Text show less
    References

    [1] Wang X Y, Liu L J. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441.

    [2] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-120.

    [3] Chen C T. Development of New NLO Crystals in the Borate Series. In: Laser Science and Technology, An International Handbook[M]. Switzerland: Plenum Press, 1993.

    [4] Chen C T, Wu B C, Jiang A D, et al. A new ultraviolet SHG crystal β-BaB2O4[J]. Scientia Sinica B, 1985, 28: 235-243.

    [5] Chen C T, Wu Y C, Jiang A D, et al. New nonlinear optical crystal: LiB3O5[J]. Journal of the Optical Society America B, 1989, 6(4): 616-621.

    [6] Mei L F, Chen C T, Wu B C. Nonlinear optical materials based on MBe2BO3F2 (M=Na, K)[J]. Journal of Applied Physics, 1993, 74(11): 7014-7015.

    [7] Jones-Bey H. Deep-UV applications await improved nonlinear optics[J]. Laser Focus World, 1998, 34: 127-134.

    [8] Chen C T, Luo S Y, Wang X Y, et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2[J]. Journal of the Optical Society America B, 2009, 26(8): 1519-1525.

    [9] Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey[M]. Transl. by Wang J Y. Beijing: Higher Education Press, 2009.

    [10] Petrov V, Rotermund F, Noack F. Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8·4H2O[J]. Electronics Letters, 1998, 34(18): 1748-1750.

    [11] Petrov V, Rotermund F, Noack F, et al. Vacuum ultraviolet application of Li2B4O7 crystals: Generation of 100 fs pulses down to 170 nm[J]. Journal of Applied Physics, 1998, 84(11): 5887-5892.

    [12] Kang L, Luo S Y, Peng G, et al. First-principles design of a deep-ultraviolet nonlinear-optical crystal from KBe2BO3F2 to NH4Be2BO3F2[J]. Inorganic Chemistry, 2015, 54(22): 10533-10535.

    [13] Peng G, Ye N, Lin Z S, et al. NH4Be2BO3F2 and γ-Be2BO3F: Overcoming the layering habit in KBe2BO3F2 for the next generation deep-ultraviolet nonlinear optical materials[ J]. Angewandte Chemie International Edition, 2018, 57: 8968-8972.

    [14] Kang L, Liang F, Lin Z S, et al. Deep-ultraviolet nonlinear optical crystals by design: A computer-aided modeling blueprint from first principles[J]. Science China Materials, 2020, 63(8): 1597-1612.

    [15] Kurtz S K, Perry T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968, 39(8): 3798-3813.

    [16] Wang X Y, Liu L J, Li R K. Recent research progress of KBBF deep-UV NLO crystal[J]. Journal of Synthetic Crystals, 2019, 48(10): 1790-1798.

    [17] Li R K. The interpretation of UV absorption of borate glasses and crystals[J]. Journal of Non-Crystalline Solids, 1989, 111(2-3): 199-204.

    [18] Chen C T, Wang Y B, Xia Y N, et al. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach[J]. Journal of Applied Physics, 1995, 77(6): 2268-2272.

    [19] Xia Y N, Chen C T, Tang D Y, et al. New nonlinear optical crystal for UV and VUV harmonic generation[J]. Advanced Materials, 1995, 7: 79-81.

    [20] Chen C T, Xu Z Y, Deng D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 1996, 68(21): 2930-2932.

    [21] Wang J Y, Zhang C Q, Liu Y G, et al. Growth and properties of KBe2BO3F2 crystal[J]. Journal of Materials Research, 2003, 18(10): 2478-2485.

    [22] Wang X Y, Yan X, Luo S Y, et al. Flux growth of large KBBF crystals by localized spontaneous nucleation[J]. Journal of Crystal Growth, 2011, 318(1): 610-612.

    [23] Ye N, Tang D Y. Hydrothermal growth of KBe2BO3F2 crystals[J]. Journal of Crystal Growth, 2006, 293: 233-235.

    [24] Mcmillen C D, Kolis J W. Hydrothermal crystal growth of ABe2BO3F2 (A=K, Rb, Cs, Tl) NLO crystals[J]. Journal of Crystal Growth, 2008, 310: 2033-2038.

    [25] Zhou H T, He X L, Zhou W N, et al. Hydrothermal growth of KBBF crystals from KOH solution[J]. Journal of Crystal Growth, 2011, 318: 613-617.

    [26] Yu J Q, Liu L J, Jin S F, et al. Superstructure and stacking faults in hydrothermal-grown KBe2BO3F2 crystals[J]. Journal of Solid State Chemistry, 2011, 184: 2790-2793.

    [27] Sang Y H, Yu D H, Avdeev M, et al. X-ray and neutron diffraction studies of flux and hydrothermally grown nonlinear optical material KBe2BO3F2[J]. CrystEngComm, 2012, 14: 6079-6084.

    [28] Huang H W, Chen C T, Wang X Y, et al. Ultraviolet nonlinear optical crystal: CsBe2BO3F[J]. Journal of the Optical Society of America B, 2011, 28(9): 2186-2190.

    [29] Chen C T, Wang G L, Wang X Y, et al. Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal[J]. IEEE Journal of Quantum Electronics, 2008, 44(7): 617-621.

    [30] Li R K, Wang L R, Wang X Y, et al. Dispersion relations of refractive indices suitable for KBe2BO3F2 crystal deep-ultraviolet applications[J]. Applied Optics, 2016, 55(36): 10423-10426.

    [31] Chen C T, Wang G L, Wang X Y, et al. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications[J]. Applied Physics B, 2009, 97: 9-25.

    [32] Wu H X, Wang G L, Wang X Y, et al. Sellmeier equations and phase-matching characteristics of the nonlinear optical crystal: RbBe2BO3F2[J]. Applied Optics, 2009, 48(21): 4118-4123.

    [33] Yao W J, He R, Wang X Y, et al. Analysis of deep-UV nonlinear optical borates: Approaching the end[J]. Advanced Optical Materials, 2014, 2: 411-417.

    [34] Guo S, Liang F, Liu L J, et al. LiSr3Be3B3O9F4: A new ultraviolet nonlinear optical crystal for fourth-harmonic generation of Nd:YAG lasers[J]. New Journal of Chemistry, 2017, 41: 4269-4272.

    [35] Guo S, Jiang X X, Xia M J, et al. Structural design of two fluorine-beryllium borates BaMBe2(BO3)2F2 (M=Mg, Ca) containing flexible two-dimensional[Be3B3O6F3]∞ single layers without structural instability problems[J]. Inorganic Chemistry, 2017, 56(19): 11451-11454.

    [36] Guo S, Jiang X X, Liu L J, et al. BaBe2BO3F3: A KBBF-type deep-ultraviolet nonlinear optical material with reinforced[Be2BO3F2]∞ layers and short phase-matching wavelength[J]. Chemistry of Materials, 2016, 28: 8871-8875.

    [37] Cakmak G, Nuss J, Jansen M. LiB6O9F, the first lithium fluorooxoborate-crystal structure and ionic conductivity[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2009, 635: 631-636.

    [38] Pilz T, Nuss H, Jansen M. Li2B3O4F3, a new lithium-rich fluorooxoborate[J]. Journal of Solid State Chemistry, 2012, 186: 104-108.

    [39] Pilz T, Jansen M. Li2B6O9F2, a new acentric fluorooxoborate[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2011, 637(14-15): 2148-2152.

    [40] Liang F, Kang L, Gong P F, et al. Rational design of deep-ultraviolet nonlinear optical materials in fluorooxoborates: Toward optimal planar configuration[J]. Chemistry of Materials, 2017, 29(17): 7098-7102.

    [41] Shi G Q, Wang Y, Zhang F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648.

    [42] Wang X F, Wang Y, Zang B B, et al. CsB4O6F: A congruent-melting deep-ultraviolet nonlinear optical material with superior functional units recombination[J]. Angewandte Chemie International Edition, 2017, 56(45): 14119-14123.

    [43] Wang Y, Zhang B B, Yang Z H, et al. Cation-tuned synthesis of fluorooxoborates: Towards optimal deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57: 2150-2154.

    [44] Han G P, Shi G Q, Wang Y, et al. K3B6O9F3: A new fluorooxoborate with four different anionic units[J]. Chemistry-A European Journal, 2018, 24: 4497-4502.

    [45] Shi G Q, Zhang F F, Zhang B B, et al. Na2B6O9F2: A fluoroborate with short cutoff edge and deep-ultraviolet birefringent property prepared by an open high-temperature solution method[J]. Inorganic Chemistry, 2017, 56(1): 344-350.

    [46] Zhang Z Z, Wang Y, Zhang B B, et al. Polar fluorooxoborate NaB4O6F: A promising material for ionic conduction and nonlinear optics[J]. Angewandte Chemie International Edition, 2018, 57: 6577-6581.

    [47] Luo M, Liang F, Song Y X, et al. M2B10O14F(M = Ca, Sr): Two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials[J]. Journal of the American Chemical Society, 2018, 140: 3884-3887.

    [48] Luo M, Liang F, Song Y X. Rational design of the first lead/tin fluorooxoborates MB2O3F2 (M=Pb, Sn), containing flexible two-dimensional[B6O12F6]∞ single layers with widely divergent second harmonic generation effects[J]. Journal of the American Chemical Society, 2018, 140: 6814-6817.

    [49] Peng G, Ye N, Lin Z S, et al. NH4Be2BO3F2 and γ-Be2BO3F: Overcoming the layering habit in KBe2BO3F2 for the next generation deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57: 8968-8972.

    [50] Miriding M, Zhang M, Yang Z H, et al. Targeting the next generation of deep-ultraviolet nonlinear optical materials: Expanding from borates to borate fluorides to fluorooxoborates[J]. Accounts of Chemical Research, 2019, 52: 791-801.

    [51] Chen C T, Lü J H, Wang G L, et al. Deep-ultraviolet harmonic generation with KBe2BO3F2 crystal[J]. Chinese Physics Letters, 2001, 18(8): 1081.

    [52] Chen C T, Watanabe S, Xu Z Y, et al. Recent advances of deep and vacuum-UV harmonic generation with new borate crystals[C]. CTUT3 (invited paper), CLEO/QELS, Baltimore, Maryland, USA, 2003.

    [53] Zhang X, Wang Z M, Wang G L, et al. Widely tunable and high-average-power fourth-harmonic generation of a Ti: sapphire laser with a KBe2BO3F2 prism-coupled device[J]. Optics Letters, 2009, 34(9): 1342-1344.

    [54] Nomura Y, Ito Y, Ozawa A, et al. Coherent quasi-cw 153 nm light source at 33 MHz repetition rate[J]. Optics Letters, 2011, 36: 1758-1760.

    [55] Nakazato T, Ito I, Kobayashi Y, et al. Phase-matched frequency conversion below 150 nm in KBe2BO3F2[J]. Optics Express, 2016, 24(15): 17149-17158.

    [56] Kanai T, Wang X Y, Adachi S, et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device[J]. Optics Express, 2009, 17(10): 8696-8703.

    [57] Scholz M, Opalevs D, Leisching G P, et al. A bright continuous-wave laser source at 193 nm[J]. Applied Physics Letters, 2013, 103: 051114.

    [58] Dai S B, Chen M, Zhang S J, et al. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF[J]. Laser Physics Letters, 2016, 13: 035401.

    [59] Xu B, Liu L J, Wang X Y, et al. Generation of high power 200 mW laser radiation at 177.3 nm in KBe2BO3F2 crystal[J]. Applied Physics B, 2015, 121: 489-494.

    [60] Xu Z Y, Zhang S J, Zhou X J, et al. Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(7): 885-913.

    [61] Kiss T, Kanetaka F, Yokoya T, et al. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor[J]. Physical Review Letters, 2005, 94(5): 057001.

    [62] Cyranoski D. China’s crystal cache[J]. Nature, 2009, 457: 953-955.

    WANG Xiaoyang, LIU Lijuan. KBe2BO3F2 crystal and all-solid-state deep ultraviolet laser[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 131
    Download Citation