• Acta Photonica Sinica
  • Vol. 52, Issue 11, 1113001 (2023)
Jian SHEN, Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG*, and Yikai SU**
Author Affiliations
  • Department of Electronic Engineering,State Key Lab of Advanced Optical Communication Systems and Networks,Shanghai Jiao Tong University,Shanghai 200240,China
  • show less
    DOI: 10.3788/gzxb20235211.1113001 Cite this Article
    Jian SHEN, Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG, Yikai SU. Research Progress in Optoelectronics Integration Technology Based on Piezoelectric Effect(Invited)[J]. Acta Photonica Sinica, 2023, 52(11): 1113001 Copy Citation Text show less
    References

    [1] R SOREF. Silicon photonics: a review of recent literature. Silicon, 2, 1-6(2010).

    [2] Yikai SU, Yu HE, Xuhan GUO et al. Scalability of large-scale photonic integrated circuits. ACS Photonics, 10, 2020-2030(2023).

    [3] Yong ZHANG, Yu HE, Qingming ZHU et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range. Optics Letters, 43, 4518-4521(2018).

    [4] Luqi TU, Rongrong CAO, Xudong WANG et al. Ultrasensitive negative capacitance phototransistors. Nature Communications, 11, 101(2020).

    [5] S ABEL, T STOFERLE, C MARCHIORI et al. A hybrid barium titanate-silicon photonics platform for ultraefficient electro-optic tuning. Journal of Lightwave Technology, 34, 1688-1693(2016).

    [6] H JUNG, H X TANG. Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion. Nanophotonics, 5, 263-271(2016).

    [7] K ALEXANDER, J P GEORGE, J VERBIST et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nature Communications, 9, 3444(2018).

    [8] Jian SHEN, Yuyan FAN, Zihan XU et al. Ultralow-power piezo-optomechanically tuning on CMOS-compatible integrated silicon-hafnium-oxide platform. Laser & Photonics Reviews, 17, 202200248(2022).

    [9] D B SOHN, O E ÖRSEL, G BAHL. Electrically driven optical isolation through phonon-mediated photonic Autler-Townes splitting. Nature Photonics, 15, 822-827(2021).

    [10] M DONG, G CLARK, A J LEENHEER et al. High-speed programmable photonic circuits in a cryogenically compatible, visible-near-infrared 200 mm CMOS architecture. Nature Photonics, 16, 59-65(2021).

    [11] T ADAM, J KOLODZEY, C SWANN et al. The electrical properties of MIS capacitors with AlN gate dielectrics. The 10th International Conference on Solid Films and Surfaces, 175, 428-435(2001).

    [12] E MOKHOV, O AVDEEV, I BARASH et al. Sublimation growth of AlN bulk crystals in Ta crucibles. Journal of Crystal Growth, 281, 93-100(2005).

    [13] M MORITA, N UESUGI, S ISOGAI et al. Epitaxial growth of aluminum nitride on sapphire using metalorganic chemical vapor deposition. Japanese Journal of Applied Physics, 20, 17(1981).

    [14] Maoqi HE, Naiqun CHENG, Peizhen ZHOU et al. Preparation of nearly oxygen-free AlN thin films by pulsed laser deposition. Journal of Vacuum Science & Technology A, 16, 2372-2375(1998).

    [15] Chi XIONG, W H PERNICE, Xiankai SUN et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New Journal of Physics, 14, 095014(2012).

    [16] M STEGMAIER, J EBERT, J MECKBACH et al. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths. Applied Physcis Letters, 104, 091108(2014).

    [17] J B SURYA, Xiang GUO, Changlin ZOU et al. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica, 5, 103-108(2018).

    [18] G TERRASANTA, M MÜLLER, T SOMMER et al. Growth of aluminum nitride on a silicon nitride substrate for hybrid photonic circuits. Materials for Quantum Technology, 1, 021002(2021).

    [19] G IRIARTE, D REYES, D GONZÁLEZ et al. Influence of substrate crystallography on the room temperature synthesis of AlN thin films by reactive sputtering. Applied Surface Science, 257, 9306-9313(2011).

    [20] T J LU, M FANTO, H CHOI et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Optics Express, 26, 11147-11160(2018).

    [21] C D BRUZEWICZ, J CHIAVERINI, R MCCONNELL et al. Trapped-ion quantum computing: progress and challenges. Applied Physcis Reviews, 6, 021314(2019).

    [22] Yiren CHEN, Hang SONG, Dabing LI et al. Influence of the growth temperature of AlN nucleation layer on AlN template grown by high-temperature MOCVD. Materials Letters, 114, 26-28(2014).

    [23] Xianwen LIU, Changzheng SUN, Bing XIONG et al. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. Optics Express, 25, 587-594(2017).

    [24] Junhua YIN, Daihua CHEN, Hang YANG et al. Comparative spectroscopic studies of MOCVD grown AlN films on Al2O3 and 6H–SiC. Journal of Alloys and Compounds, 857, 157487(2021).

    [25] Chi XIONG, W H PERNICE, H X TANG. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Letters, 12, 3562-3568(2012).

    [26] H JUNG, H X TANG. Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion. Nanophotonics, 5, 263-271(2016).

    [27] T YOKOYAMA, Y IWAZAKI, Y ONDA et al. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 1007-1015(2015).

    [28] S BARTH, H BARTZSCH, D GLÖß et al. Magnetron sputtering of piezoelectric AlN and AlScN thin films and their use in energy harvesting applications. Microsystem Technologies, 22, 1613-1617(2016).

    [29] S T HAIDER, M A SHAH, D G LEE et al. A review of the recent applications of aluminum nitride-based piezoelectric devices. IEEE Access, 11, 58779-58795(2023).

    [30] M NOOR-A-ALAM, O Z OLSZEWSKI, M NOLAN. Ferroelectricity and large piezoelectric response of AlN/ScN superlattice. ACS Applied Materials & Interfaces, 11, 20482-20490(2019).

    [31] E THOMAS, R RANJITH. Effect of doping in aluminium nitride (AlN) nanomaterials: a review. ECS Transactions, 107, 15229(2022).

    [32] H H NGUYEN, L V MINH, H OGUCHI. Development of highly efficient micro energy harvesters with MgHf-codoped AlN piezoelectric films, 222-225(2018).

    [33] Longfei SONG, S GLINSEK, E DEFAY. Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Applied Physics Reviews, 8, 041315(2021).

    [34] P J WINZER. Making spatial multiplexing a reality. Nature Photonics, 8, 345-348(2014).

    [35] R FRUNZA, D RICINSCHI, F GHEORGHIU et al. Preparation and characterisation of PZT films by RF-magnetron sputtering. Journal of Alloys and Compounds, 509, 6242-6246(2011).

    [36] J N WINN, D RUSIN, C S KOCHANEK. The central image of a gravitationally lensed quasar. Nature, 427, 613-615(2004).

    [37] Xiaohong DU, Jiehui ZHENG, U BELEGUNDU et al. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Applied Physics Letters, 72, 2421-2423(1998).

    [38] V KOVACOVA, N VAXELAIRE, G LE RHUN et al. Correlation between electric-field-induced phase transition and piezoelectricity in lead zirconate titanate films. Physical Review B, 90, 140101(2014).

    [39] G TAN, K MARUYAMA, Y KANAMITSU et al. Crystallographic contributions to piezoelectric properties in PZT thin films. Scientific Reports, 9, 7309(2019).

    [40] Yifan QI, Yang LI. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [41] Sen YANG, Huixin BAO, Chao ZHOU et al. Large magnetostriction from morphotropic phase boundary in ferromagnets. Physical Review Letters, 104, 197201(2010).

    [42] T S BÖSCKE, J MÜLLER, D BRÄUHAUS et al. Ferroelectricity in hafnium oxide thin films. Applied Physics Letters, 99, 102903(2011).

    [43] J MüLLER, TS BÖSCKE, U SCHRODER et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Letters, 12, 4318-4323(2012).

    [44] S MÜLLER, J MÜLLER, A SINGH et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Advanced Functional Materials, 22, 2412-2417(2012).

    [45] Yu ZHANG, Jun XU, Dayu ZHOU et al. Effects of Hf buffer layer at the Y-doped HfO2/Si interface on ferroelectric characteristics of Y-doped HfO2 films formed by reactive sputtering. Ceramics International, 44, 12841-12846(2018).

    [46] T C U TROMM, J ZHANG, J SCHIBERT et al. Ferroelectricity in Lu doped HfO2 layers. Applied Physics Letters, 111, 142904(2017).

    [47] T KIM, J W LIM, S J YUN et al. Multi-level long-term memory resembling human memory based on photosensitive field-effect transistors with stable interfacial deep traps. Advanced Electronic Materials, 6, 1901044(2020).

    [48] T MITTMANN, M MATERANO, P D LOMENZO et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering. Advanced Materials Interfaces, 6, 1900042(2019).

    [49] S S CHEEMA, D KWON, N SHANKER et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 580, 478-482(2020).

    [50] Yingfen WEI, P NUKALA, M SALVERDA et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nature Materials, 17, 1095-1100(2018).

    [51] M D GLINCHUK, A N MOROZOVSKA, A LUKOWIAK et al. Possible electrochemical origin of ferroelectricity in HfO2 thin films. Journal of Alloys and Compounds, 830, 153628(2020).

    [52] Y SAKASHITA, H SEGAWA. Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. Journal of Applied Physics, 77, 5995-5999(1995).

    [53] Mingxiao LI, Jingwei LING, Yang HE et al. Lithium niobate photonic-crystal electro-optic modulator. Nature Communications, 11, 4123(2020).

    [54] Y NAKATA, S GUNJI, T OKADA et al. Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Applied Physics A, 79, 1279-1282(2004).

    [55] J G YOON, K KIM. Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process. Applied Physics Letters, 68, 2523-2525(1996).

    [56] Xingrui HUANG, Yang LIU, Huan GUAN et al. High-efficiency, slow-light modulator on hybrid thin-film lithium niobate platform. IEEE Photonics Technology Letters, 33, 1093-1096(2021).

    [57] Di ZHU, Linbo SHAO, Mengjie YU et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 13, 242-352(2021).

    [58] V EDON, D RÈMIENS, S SAADA. Structural, electrical and piezoelectric properties of LiNbO3 thin films for surface acoustic wave resonators applications. Applied Surface Science, 256, 1455-1460(2009).

    [59] Feifei CHEN, Lingfeng KONG, Wei SONG et al. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications. Journal of Materiomics, 5, 73-80(2019).

    [60] R N ZHUKOV, K S KUSHNEREV, D A KISELEV et al. Enhancement of piezoelectric properties of lithium niobate thin films by different annealing parameters. Modern Electronic Materials, 6, 47-52(2020).

    [61] T S YOO, S A LEE, C ROH et al. Ferroelectric polarization rotation in order-disorder-type LiNbO3 thin films. ACS Applied Materials & Interfaces, 10, 41471-41478(2018).

    [62] Y SEBBAG, I GOYKHMAN, B DESIATOV et al. Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film. Applied Physics Letters, 100, 141107(2012).

    [63] W JIN, R G POLCAWICHOL, P A MORTON et al. Phase tuning by length contraction. Optics Express, 26, 3174-3187(2018).

    [64] Jiawei WANG, Kaikai LIU, M W HARRINGTON et al. Silicon nitride stress-optic microresonator modulator for optical control applications. Optics Express, 30, 31816-31827(2022).

    [65] P R STANFIELD, A J LEENHEER, C P MICHAEL et al. CMOS-compatible, piezo-optomechanically tunable photonics for visible wavelengths and cryogenic temperatures. Optics Express, 27, 28588-28605(2019).

    [66] Hao TIAN, Junqiu LIU, Bin DONG et al. Hybrid integrated photonics using bulk acoustic resonators. Nature Communications, 11, 3073(2020).

    [67] EVERHARDTA , TLA TRAN, C MITSOLIDOU et al. Ultra-low power stress-based phase actuation in TriPleX photonic circuits. Integrated Optics: Devices, Materials, and Technologies XXVI, 12004, 15-21(2022).

    [68] Junqiu LIU, Hao TIAN, E LUCAS et al. Monolithic piezoelectric control of soliton microcombs. Nature, 583, 385-390(2020).

    [69] P JEAN, A GERVAIS, S LAROCHELLE et al. Slow light in subwavelength grating waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-8(2019).

    [70] M DONG, D HEIM, A WITTE et al. Piezo-optomechanical cantilever modulators for VLSI visible photonics. APL Photonics, 7, 051304(2022).

    [71] S A TADESSE, Mo LI. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nature Communications, 5, 5402(2014).

    [72] Huan LI, S A TADESSE, Qiyu LIU et al. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica, 2, 826-831(2015).

    [73] D B SOHN, G BAHL. Direction reconfigurable nonreciprocal acousto-optic modulator on chip. APL Photonics, 4, 126103(2019).

    [74] Chukun HUANG, Haotian SHI, Linfeng YU et al. Acousto-optic modulation in silicon waveguides based on piezoelectric aluminum scandium nitride film. Advanced Optical Materials, 10, 2102334(2022).

    [75] Lutong CAI, A MAHMOUD, M KHAN et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Research, 7, 1003-1013(2019).

    [76] Linbo SHAO, Mengjie YU, S MAITY et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    [77] A E HASSANIEN, S LINK, Yansong YANG et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photonics Research, 9, 1182-1190(2021).

    [78] C J SARABALIS, T P MCKENNA, R N PATEL et al. Acousto-optic modulation in lithium niobate on sapphire. APL Photonics, 5, 086104(2020).

    [79] M S I KHAN, A MAHMOUD, Lutong CAI et al. Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach-Zehnder acoustooptic modulator on lithium niobate. Journal of Lightwave Technology, 38, 2053-2059(2020).

    [80] Zejie YU, Xiankai SUN. Acousto-optic modulation of photonic bound state in the continuum. Light: Science & Applications, 9, 1(2020).

    [81] Lei WAN, Zhiqiang YANG, Wenfeng ZHOU et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light: Science & Applications, 11, 145(2022).

    [82] Zhiqiang YANG, Meixun WEN, Lei WAN et al. Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform. Optics Letters, 47, 3808-3811(2022).

    [83] Hao TIAN, Junqiu LIU, A SIDDHARTH et al. Magnetic-free silicon nitride integrated optical isolator. Nature Photonics, 15, 828-836(2021).

    [84] D B SOHN, S KIM, G BAHL. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nature Photonics, 12, 91-97(2018).

    [85] E A KITTLAUS, W M JONES, P T RAKICH et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nature Photonics, 15, 43-52(2021).

    [86] Han ZHAN, Bingzhao LI, Huan LI et al. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nature Communications, 13, 5426(2022).

    Jian SHEN, Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG, Yikai SU. Research Progress in Optoelectronics Integration Technology Based on Piezoelectric Effect(Invited)[J]. Acta Photonica Sinica, 2023, 52(11): 1113001
    Download Citation