• Acta Photonica Sinica
  • Vol. 52, Issue 11, 1113001 (2023)
Jian SHEN, Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG*, and Yikai SU**
Author Affiliations
  • Department of Electronic Engineering,State Key Lab of Advanced Optical Communication Systems and Networks,Shanghai Jiao Tong University,Shanghai 200240,China
  • show less
    DOI: 10.3788/gzxb20235211.1113001 Cite this Article
    Jian SHEN, Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG, Yikai SU. Research Progress in Optoelectronics Integration Technology Based on Piezoelectric Effect(Invited)[J]. Acta Photonica Sinica, 2023, 52(11): 1113001 Copy Citation Text show less
    Cross section of the poly-crystalline AlN films[25-26]
    Fig. 1. Cross section of the poly-crystalline AlN films25-26
    Morphotropic phase boundary in a ferroelectric PZT system(PbZrO3-PbTiO3)[41]
    Fig. 2. Morphotropic phase boundary in a ferroelectric PZT system(PbZrO3-PbTiO341
    Characterization of orthorhombic ferroelectric phases in thin-film HfO2[42]
    Fig. 3. Characterization of orthorhombic ferroelectric phases in thin-film HfO242
    Schematic diagram of lithium niobate crystal structure[57]
    Fig. 4. Schematic diagram of lithium niobate crystal structure57
    Schematic diagram and advantages of the piezoelectric effect[10]
    Fig. 5. Schematic diagram and advantages of the piezoelectric effect10
    Low-power piezo-optomechanically tuning device based on PZT[62-64,67]
    Fig. 6. Low-power piezo-optomechanically tuning device based on PZT62-6467
    Low-power piezo-optomechanically tuning device based on AlN[65,66]
    Fig. 7. Low-power piezo-optomechanically tuning device based on AlN6566
    Low-power piezo-optomechanically tuning device based on Zr-doped HfO2[8]
    Fig. 8. Low-power piezo-optomechanically tuning device based on Zr-doped HfO28
    AlN acoustic-optic modulator[71-74]
    Fig. 9. AlN acoustic-optic modulator71-74
    LN Acoustic-Optic Modulator(AOM)[75-82]
    Fig. 10. LN Acoustic-Optic Modulator(AOM)75-82
    AlN piezo-optomechanical actuator chip and its computing applications[10]
    Fig. 11. AlN piezo-optomechanical actuator chip and its computing applications10
    AlN piezo-optomechanical actuator chip and its optical isolator application[66]
    Fig. 12. AlN piezo-optomechanical actuator chip and its optical isolator application66
    Acoustic-optic modulator application[84-86]
    Fig. 13. Acoustic-optic modulator application84-86
    MaterialAlNPZTLNHfO2
    Point group6 mm/3 mMonoclinic(25 ℃)
    Optical bandgap Eg/eV6.2/4.05.3~5.7
    Refractive index

    2.04(o)

    2.08(e)

    2.3

    2.21(o)

    2.14(e)

    1.8
    Thermo-optics dn/dT/K-12.3 ×10-5(o)/

    0.2 ×10-5(o)

    3.3 ×10-5(e)

    /
    Thermal conductionκ/(Wm-1·KW·m)320/3.5/
    Pockels coefficientr/(pm·V-1

    r33≈1.0

    r31≈0.1

    67

    r33≈30.9

    r51≈32.0

    /
    Piezoelectricityd/(pC·N-1

    d33≈5.5

    d15≈4.1

    d31≈-2.6

    d33≈150

    d15≈68

    d22≈21

    d33≈6.2

    d31≈-1

    11.5
    Table 1. Physical properties in different piezoelectric photonic platforms
    Piezoelectric propertiesAlNAlSc(0.2)NAlSc(0.4)N

    Piezoelectric

    Constant/(C·m-2

    E31 = -0.38

    E33 = 1.55

    E31 = -0.62

    E33 = 1.67

    E33 = 3.19

    Piezoelectric

    Coefficient/(pC·N-1

    d33 = 5.5

    d31 = -2.6

    d33 = 20d33 = 20~25
    Table 2. Comparison of piezoelectric properties of AlN,AlSc(0.2)N,AlSc(0.4)N29
    ReferencesStructures and materialsTuning efficiency/(pm·V-1Power efficiency/(nW·pm-1CMOS compatibilityYears
    62PZT on silicon ring19/No2012
    63PZT on silicon nitride ring251 200No2018
    64PZT on silicon nitride ring1.320No2022
    65Silicon nitride ring on AlN0.80.012 5Yes2019
    66AlN on silicon nitride ring0.125~0.25Yes2020
    8Silicon ring on HfO2 ring8.40.12Yes2022
    Table 3. Structure and performance of ultralow-power piezo-optomechanically tuning
    ReferencesMaterialStructureVπL/(Vcm)Efficiency/%Qualify factorFrequency/GHzYears
    71AlNMRR\\4×10410.62014
    72AlN

    Acoustic

    cavity

    \\5×104122015
    73AlN

    Suspended

    MRR

    \3.9\4.822019
    74AlScN

    Spiral

    waveguide

    \8.84\3.3732022
    75LNMZI2.542\0.112019
    76LN

    Suspended

    MZI

    0.04664\3.332019
    77LN

    Suspended

    MZI

    0.01919.3\1.162021
    78LN-sapphireRidge waveguide\10\4.32020
    79LN-As2S3MZI0.9495\0.112020
    80LNMRR\\5×10642020
    81LN-ChGMZI0.0398.5\0.842022
    82LN-ChGMRR0.02\5×1050.842022
    Table 4. Structure and performance of acoustic-optic modulator
    Jian SHEN, Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG, Yikai SU. Research Progress in Optoelectronics Integration Technology Based on Piezoelectric Effect(Invited)[J]. Acta Photonica Sinica, 2023, 52(11): 1113001
    Download Citation