• Opto-Electronic Advances
  • Vol. 2, Issue 6, 190006 (2019)
Sandra F. H. Correia1, Ana R. N. Bastos1, Lianshe Fu1, Luís D. Carlos1, Paulo S. André2、3、*, and Rute A. S. Ferreira1
Author Affiliations
  • 1Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
  • 2Department of Electric and Computer Engineering and Instituto de Telecomunica??es, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
  • 3Department of Electronics, Telecommunications and Informatics, Instituto de Telecomunicac?o?es, University of Aveiro, Campus Universita?rio de Santiago, 3810-193 Aveiro, Portugal
  • show less
    DOI: 10.29026/oea.2019.190006 Cite this Article
    Sandra F. H. Correia, Ana R. N. Bastos, Lianshe Fu, Luís D. Carlos, Paulo S. André, Rute A. S. Ferreira. Lanthanide-based downshifting layers tested in a solar car race[J]. Opto-Electronic Advances, 2019, 2(6): 190006 Copy Citation Text show less

    Abstract

    The mismatch between the AM1.5G spectrum and the photovoltaic (PV) cells absorption is one of the most limiting factors for PV performance. To overcome this constraint through the enhancement of solar energy harvesting, luminescent downshifting (LDS) layers are very promising to shape the incident sunlight and, thus, we report here the use of Tb3+- and Eu3+-doped organic-inorganic hybrid materials as LDS layers on Si PV cells. Electrical measurements on the PV cell, done before and after the deposition of the LDS layers, confirm the positive effect of the coatings on the cell''s performance in the UV spectral region. The maximum delivered power and the maximum absolute external quantum efficiency increased 14% and 27%, respectively. Moreover, a solar powered car race was organized in which the small vehicle containing the coated PV cells presented a relative increase of 9% in the velocity, when compared to that with the uncoated one.
    $ n(\lambda)=A+\frac{B}{\lambda^{2}}+\frac{C}{\lambda^{4}}, $ (1)

    View in Article

    $ E Q E(\lambda)=\frac{I_{\text {sc}} \cdot h \cdot c}{P_{\text { in }} \cdot e \cdot \lambda} $ (2)

    View in Article

    $ O=\int_{\lambda_{1}}^{\lambda_{2}} \mathit{\Phi}_{\mathrm{AM1.5G}}(\lambda) \times\left(1-10^{-A(\lambda)}\right) \mathrm{d} \lambda, $ (3)

    View in Article

    $ Haze=\frac{R_{\text { diffuse }}}{R_{\text { total }}}, $ (4)

    View in Article

    $ \Delta P=\frac{\int_{0}^{V_{\infty}} P_{\text { coated }}(\mathrm{d} V)-\int_{0}^{V_{\mathrm{o}}} P_{\text { bare }}(\mathrm{d} V)}{\int_{0}^{V_{\infty}} P_{\text { coated }}(\mathrm{d} V)} \times 100, $ (5)

    View in Article

    $ \Delta EQ{{E}_{\text{AM}1.5\text{G}}}=100\times \left[ 1-\frac{\int_{300}^{800}{E}Q{{E}_{\text{ bare }}}(\lambda )\times {{I}_{\text{AM}1.5\text{G}}}(\lambda )}{\int_{300}^{800}{E}Q{{E}_{\text{ coated }}}(\lambda )\times {{\mathit{\Phi} }_{\text{ AM1}\text{. 5G }}}(\lambda )} \right], $ (6)

    View in Article

    Sandra F. H. Correia, Ana R. N. Bastos, Lianshe Fu, Luís D. Carlos, Paulo S. André, Rute A. S. Ferreira. Lanthanide-based downshifting layers tested in a solar car race[J]. Opto-Electronic Advances, 2019, 2(6): 190006
    Download Citation