• Photonics Research
  • Vol. 12, Issue 9, 1877 (2024)
Chen Zhang1,2,3, Yisi Dong1,2,3,*, Pengcheng Hu1,2,3,5, Haijin Fu1,2,3..., Hongxing Yang1,2,3, Ruitao Yang1,2,3, Yongkang Dong3,4, Limin Zou1,2 and Jiubin Tan1,2|Show fewer author(s)
Author Affiliations
  • 1Center of Ultra-precision Optoelectronic Instrument, Harbin Institute of Technology, Harbin 150080, China
  • 2Key Laboratory of Ultra-precision Intelligent Instrumentation, Harbin Institute of Technology, Harbin 150080, China
  • 3Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
  • 4National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
  • 5e-mail: hupc@hit.edu.cn
  • show less
    DOI: 10.1364/PRJ.525667 Cite this Article Set citation alerts
    Chen Zhang, Yisi Dong, Pengcheng Hu, Haijin Fu, Hongxing Yang, Ruitao Yang, Yongkang Dong, Limin Zou, Jiubin Tan, "Large-range displacement measurement in narrow space scenarios: fiber microprobe sensor with subnanometer accuracy," Photonics Res. 12, 1877 (2024) Copy Citation Text show less
    References

    [1] K. Peng, Z. Z. Deng, X. K. Liu. Planar two-dimensional capacitive displacement sensor based on time grating. IEEE Trans. Ind. Electron., 71, 4262-4272(2024).

    [2] N. G. Orji, M. Badaroglu, B. M. Barnes. Metrology for the next generation of semiconductor devices. Nat. Electron., 1, 532-547(2018).

    [3] N. Wadhwa, J. G. Chen, J. B. Sellon. Motion microscopy for visualizing and quantifying small motions. Proc. Natl. Acad. Sci. USA, 114, 11639-11644(2017).

    [4] Q. Wang, X. Y. Yin, P. Yin. Research progress of resonance optical fiber sensors modified by low-dimensional materials. Laser Photonics Rev., 17, 2200859(2023).

    [5] W. Yu, N. Yao, J. Pan. Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers. Opto-Electron. Adv., 5, 210101(2022).

    [6] X. Z. Xu, J. He, M. X. Hou. A miniature fiber collimator for highly sensitive bend measurements. J. Lightwave Technol., 36, 2827-2833(2018).

    [7] G. A. Granch, P. J. Nash. High-responsivity fiber-optic flexural disk accelerometers. J. Lightwave Technol., 18, 1233-1243(2000).

    [8] Y. Yang, Z. C. Luo, Z. M. Wang. High-performance fiber optic interferometric hydrophone based on push-pull structure. IEEE Trans. Instrum. Meas., 70, 9511313(2021).

    [9] F. Shabahang, S. T. Smith. Multi-axis modulated compact fiber-based Fabry-Perot interferometric probe. Appl. Opt., 61, 2768-2774(2022).

    [10] T. Jin, W. Wang, L. Daul. A low-finesse all-fiber sinusoidal phase modulation interferometer for displacement measurement. Opt. Commun., 493, 126997(2021).

    [11] B. K. Nowakowski, D. T. Smith, S. T. Smith. Highly compact fiber Fabry-Perot interferometer: a new instrument design. Rev. Sci. Instrum., 87, 115102(2016).

    [12] Z. L. Xu, Z. H. Wang, L. Y. Chen. Two-dimensional displacement sensor based on a dual-cavity Fabry-Perot interferometer. J. Lightwave Technol., 40, 1195-1201(2022).

    [13] H. W. Liang, Y. Sun, Z. Huang. Reconstruction of Fabry-Perot cavity interferometer nanometer micro-displacement based on Hilbert transform. Chin. Opt. Lett., 19, 091202(2021).

    [14] F. Gao, J. Yang. Design and experimental research on miniature fiber-optic displacement sensor. Proc. SPIE, 8557, 85572N(2012).

    [15] Y. N. Zhang, Y. J. Li, T. Wei. Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator. IEEE Photonics J., 2, 469-481(2010).

    [16] K. Thurner, P. F. Braun, K. Karrai. Fabry-Perot interferometry for long range displacement sensing. Rev. Sci. Instrum., 84, 095005(2013).

    [17] L. Cai, J. Wang, J. Y. Pan. A tunable fiber-optic Fabry-Perot cavity formed between a silica microsphere and a target. Opt. Commun., 459, 124996(2020).

    [18] J. H. Xie, F. Y. Wang, Y. Pan. High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors. Opt. Fiber Technol., 22, 1-6(2015).

    [19] Z. H. Yu, A. B. Wang. Fast white light interferometry demodulation algorithm for low-finesse Fabry-Pérot sensors. IEEE Photonics Technol. Lett., 27, 817-820(2015).

    [20] Q. Liu, A. Li, Y. Y. Liu. TWDM-assisted active quadrature demodulation of fiber-optic Fabry-Perot acoustic sensor network. J. Lightwave Technol., 39, 3991-3997(2021).

    [21] G. Liu, Y. Zhu, Z. Liu. Passive quadrature demodulation of an ultrasonic fiberoptic interferometric sensor using a laser and an acousto-optic modulator. Opt. Lett., 44, 2756-2761(2019).

    [22] L. P. Yan, B. Y. Chen, Z. Q. Chen. Phase-modulated dual-homodyne interferometer without periodic nonlinearity. Meas. Sci. Technol., 28, 115006(2017).

    [23] J. He, L. Wang, F. Li. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability. J. Lightwave Technol., 28, 3258-3265(2010).

    [24] Y. S. Dong, P. C. Hu, M. Ran. Correction of nonlinear errors from PGC carrier phase delay and AOIM in fiber-optic interferometers for nanoscale displacement measurement. Opt. Express, 28, 2611-2624(2020).

    [25] B. Ferdman, A. Saguy, D. F. Xiao. Diffractive optical system design by cascaded propagation. Opt. Express, 30, 27509-27530(2022).

    [26] J. C. Li, Y. P. Zhang, T. C. Poon. On the relation between Abbe’s theory and Rayleigh diffraction in coherent imaging through the use of Collins’ integral. Opt. Laser Eng., 173, 107898(2023).

    [27] X. Z. Ke, S. C. Lei. Spatial light coupled into a single-mode fiber by a Maksutov-Cassegrain antenna through atmospheric turbulence. Appl. Opt., 55, 3897-3902(2016).

    [28] S. H. Zhang, Q. Liu, Y. T. Lou. Simultaneous phase detection of multi-wavelength interferometry based on frequency division multiplexing. J. Lightwave Technol., 40, 4990-4998(2022).

    [29] G. L. Dai, F. Pohlenz, H. U. Danzebrink. Improving the performance of interferometers in metrological scanning probe microscopes. Meas. Sci. Technol., 15, 444-450(2004).

    [30] P. C. Hu, J. H. Zhu, X. B. Guo. Compensation for the variable cyclic error in homodyne laser interferometers. Sensors, 15, 3090-3106(2015).

    [31] W. Z. Xiao, J. Cheng, D. W. Zhang. High stability PGC demodulation technique for fiber-optic interferometric sensor. Opto-Electron. Eng., 49, 210368(2022).

    [32] A. Bridges, A. Yacoot, T. Kissinger. Correction of periodic displacement non-linearities by two-wavelength interferometry. Meas. Sci. Technol., 32, 125202(2021).

    Chen Zhang, Yisi Dong, Pengcheng Hu, Haijin Fu, Hongxing Yang, Ruitao Yang, Yongkang Dong, Limin Zou, Jiubin Tan, "Large-range displacement measurement in narrow space scenarios: fiber microprobe sensor with subnanometer accuracy," Photonics Res. 12, 1877 (2024)
    Download Citation