• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 6, 727 (2017)
HUANG Ren-Gui1、*, CHEN Jie1, LIANG Yan1, SHEN Xu-Ling1, and ZENG He-Ping1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.06.015 Cite this Article
    HUANG Ren-Gui, CHEN Jie, LIANG Yan, SHEN Xu-Ling, ZENG He-Ping. Optical time domain reflectometer based on dual repetition rates[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 727 Copy Citation Text show less
    References

    [1] Derickson D. Fiber Optic-Test and Measurement[M]. 1sted., Prentice Hall, 1998.

    [2] Barnoski M K, et al,Optical time domain reflectometer[J]. OSA-Applied Optics, 1977, 16, 2375-2379.

    [3] Eraerds P, Legre M, Zhang J, et al. Photon counting OTDR: advantages and limitations[J].Journal of Lightwave Technology, 2010, 28(6):952-964.

    [5] Scholder F, Gautier J D, Wegmuller M, et al. Long-distance OTDR using photon counting and large detection gates at telecom wavelength[J]. Opt. Commun, 2002, 213, 57-61.

    [6] Fujiwara M, Miki S, Yamashita T, et al. Photon level rosstalk between parallel fibers installed in urban area[J]. Opt. Exp., 2010, 18(21):22199-22207.

    [7] Eraerds P. Photon counting OTDR: Advantages and limitations[J]. J. Lightwave Technol., 2010, 28:952-964.

    [8] Healey P, Hensel P. Optical time domain reflectometry by photon counting[J]. Electron. Lett., 1980, 16(16): 631-633.

    [9] Shentu, G L, Sun Q C, Jiang X, et al. 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector[J]. Opt. Express,2013, 21:24674-24679.

    [10] Diamanti E, Langrock C, Fejer M M, et al. 1.5 m photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide[J]. Opt. Lett., 2006,31(6): 727-730.

    [11] Ma L, Slattery O, Tang X. Single photon frequency up-conversion and its applications[J]. Phys. Rep. 2012, 521:69-94.

    [12] Legré M, Thew R, Zbinden H. et al. High resolution optical time domain reflectometer based on 1.55 mum up-conversion photon-counting module[J]. Opt. Express, 2007, 15, 8237-42.

    [13] Chen S J, Liu D K, Zhang W X, et al. Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system[J]. Appl. Opt. 2013, 52:3241-5.

    [14] Hu J, Zhao Q, Zhang X, et al. Photon-counting optical time-domain reflectometry using a superconducting nanowire single-photon detecto[J]. Journal of Lightwave Technology, 2012, 30(16):2583-2588.

    [15] You L, Yang X, He Y, et al. Jitter analysis of a superconducting nanowire single photon detector[J]. Aip Advances, 2013, 3(7):705-582.

    [16] Rosenberg D, Kerman A J, Molnar R J, et al. High-speed and high-efficiency superconducting nanowire single photon detector array[J]. Opt. Express, 2013, 21(2):1440.

    [17] Schuck C, Pernice W H P, Ma X, et al. Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors[J]. Appl. Phys. Lett. 2013, 102(19):2112.

    [18] Liang Y, Huang J, Ren M, et al. 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity[J]. Optics Express, 2014,22(4):4662-70.

    HUANG Ren-Gui, CHEN Jie, LIANG Yan, SHEN Xu-Ling, ZENG He-Ping. Optical time domain reflectometer based on dual repetition rates[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 727
    Download Citation