• Infrared and Laser Engineering
  • Vol. 54, Issue 3, 20250058 (2025)
Qing WANG, Xiaoyu YANG, Pengwei LI, and Shu CHEN
Author Affiliations
  • Terahertz Technology Innovation Research Institute, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/IRLA20250058 Cite this Article
    Qing WANG, Xiaoyu YANG, Pengwei LI, Shu CHEN. Research progress on terahertz polaritons in low-dimensional materials (invited)[J]. Infrared and Laser Engineering, 2025, 54(3): 20250058 Copy Citation Text show less
    References

    [1] T NAGATSUMA, G DUCOURNAU, C C RENAUD. Advances in terahertz communications accelerated by photonics. Nature Photonics, 10, 371-379(2016).

    [2] X LI, D MENGU, N T YARDIMCI et al. Plasmonic photoconductive terahertz focal-plane array with pixel super-resolution. Nature Photonics, 18, 139-148(2024).

    [3] D A BANDURIN, D SVINTSOV, I GAYDUCHENKO et al. Resonant terahertz detection using graphene plasmons. Nature Communications, 9, 5392(2018).

    [4] W WANG, K SUN, Y XUE et al. A review of terahertz metamaterial sensors and their applications. Optics Communications, 556, 130266(2024).

    [5] D N BASOV, M M FOGLER, DE ABAJO F J GARCÍA. Polaritons in van der Waals materials. Science, 354, aag1992(2016).

    [6] S FOTEINOPOULOU, G C R DEVARAPU, G S SUBRAMANIA et al. Phonon-polaritonics: Enabling powerful capabilities for infrared photonics. Nanophotonics, 8, 2129-2175(2019).

    [7] W L BARNES, A DEREUX, T W EBBESEN. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [8] D K GRAMOTNEV, S I BOZHEVOLNYI. Plasmonics beyond the diffraction limit. Nature Photonics, 4, 83-91(2010).

    [9] X WANG, S C HUANG, S HU et al. Fundamental understanding and applications of plasmon-enhanced raman spectroscopy. Nature Reviews Physics, 2, 253-271(2020).

    [10] M W KNIGHT, N S KING, L F LIU et al. Aluminum for plasmonics. Acs Nano, 8, 834-840(2014).

    [11] J F LI, C Y LI, R F AROCA. Plasmon-enhanced fluorescence spectroscopy. Chemical Society Reviews, 46, 3962-3979(2017).

    [12] W HUANG, T G FOLLAND, F SUN et al. In-plane hyperbolic polariton tuners in terahertz and long-wave infrared regimes. Nature Communications, 14, 2716(2023).

    [13] T LOW, P AVOURIS. Graphene plasmonics for terahertz to mid-infrared applications. Acs Nano, 8, 1086-1101(2014).

    [14] J M CARIDAD, Ó CASTELLÓ, B S M LÓPEZ et al. Room-temperature plasmon-assisted resonant THz detection in single-layer graphene transistors. Nano Letters, 24, 935-942(2024).

    [15] R JING, Y SHAO, Z FEI et al. Terahertz response of monolayer and few-layer WTe2 at the nanoscale. Nature Communications, 12, 5594(2021).

    [16] S CHEN, P L LENG, A KONEČNÁ et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nature Materials, 22, 860-866(2023).

    [17] M ZHANG, X X WANG, W Q CAO et al. Electromagnetic functions of patterned 2D materials formicro–nano devices covering GHz, THz, and optical frequency. Advanced Optical Materials, 7, 1900689(2019).

    [18] A KUMAR, A SOLANKI, M MANJAPPA et al. Excitons in 2D perovskites for ultrafast terahertz photonic devices. Science Advances, 6, eaax8821(2020).

    [19] K HUANG. Lattice vibrations and optical waves in ionic crystals. Nature, 167, 779-780(1951).

    [20] A V ZAYATS, I I SMOLYANINOV. Near-field photonics: Surface plasmon polaritons and localized surface plasmons. Journal of Optics A: Pure and Applied Optic, 5, S16-S50(2003).

    [21] Maier S A. Plasmonics: Fundamentals Applications [M]. Berlin: Springer Berlin, 2007.

    [22] J R SAMBLES, G W BRADBERY, F YANG. Optical excitation of surface plasmons: An introduction. Contemporary Physics, 32, 173-183(1991).

    [23] W L MA, P ALONSO-GONZÁLEZ, S J LI et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der waals crystal. Nature, 562, 557-562(2018).

    [24] R HILLENBRAND, T TAUBNER, F KEILMANN. Phonon-enhanced light-matter interaction at the nanometre scale. Nature, 418, 159-162(2002).

    [25] Y LI, R QI, R SHI et al. Manipulation of surface phonon polaritons in SiC nanorods. Science Bulletin, 65, 820-826(2020).

    [26] D N BASOV, A ASENJO-GARCIA, P J SCHUCK et al. Polariton panorama. Nanophotonics, 10, 549-577(2021).

    [27] J CHEN, M BADIOLI, P ALONSO-GONZÁLEZ et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77-81(2012).

    [28] Z FEI, A S RODIN, G O ANDREEV et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82-85(2012).

    [29] S DAI, Z FEI, Q MA et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science, 343, 1125-1129(2014).

    [30] P N LI, I DOLADO, F J ALFARO-MOZAZ et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 359, 892-896(2018).

    [31] F L RUTA, S ZHANG, Y SHAO et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nature Communications, 14, 8261(2023).

    [32] VEGA S DE, De ABAJO F J GARCÍA. Plasmon generation through electron tunneling in graphene. ACS Photonics, 4, 2367-2375(2017).

    [33] F H L KOPPENS, D E CHANG, ABAJO F J G DE. Graphene plasmonics: A platform for strong light–matter interactions. Nano Letters, 11, 3370-3377(2011).

    [34] C H GAN, H S CHU, E P LI. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Physical Review B, 85, 125431(2012).

    [35] S CHEN, M AUTORE, J LI et al. Acoustic graphene plasmon nanoresonators for field-enhanced infrared molecular spectroscopy. ACS Photonics, 4, 3089-3097(2017).

    [36] Z DAI, G HU, G SI et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 11, 6086(2020).

    [37] G VENTURI, A MANCINI, N MELCHIONI et al. Visible-frequency hyperbolic plasmon polaritons in a natural van der Waals crystal. Nature Communications, 15, 9727(2024).

    [38] J D CALDWELL, A V KRETININ, Y CHEN et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Communications, 5, 5221(2014).

    [39] P LI, I DOLADO, F J ALFARO-MOZAZ et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der waals materials. Nano Letters, 17, 228-235(2017).

    [40] Z ZHENG, N XU, S L OSCURATO et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Science Advances, 5, eaav8690(2019).

    [41] J D CALDWELL, L LINDSAY, V GIANNINI et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics, 4, 44-68(2015).

    [42] C BERTHOMIEU, R HIENERWADEL. Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research, 101, 157-170(2009).

    [43] MOHAMED M A, JAAFAR J, ISMAIL A F, et al. Fourier Transfm Infrared (FTIR) Spectroscopy [M]Membrane acterization. Elsevier, 2017: 329.

    [44] S NANDANWAR, A DESAI, S M V ESFIDANI et al. Determining the optical and polaritonic properties of isotopically pure hbn using cryogenic ftir micro-spectroscopy. Applied Physics Letters, 126, 011109(2025).

    [45] G X NI, A S MCLEOD, Z SUN et al. Fundamental limits to graphene plasmonics. Nature, 557, 530-533(2018).

    [46] C WANG, S HUANG, Q XING et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nature Communications, 11, 1158(2020).

    [47] J NEU, C A SCHMUTTENMAER. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDs). Journal of Applied Physics, 124, 231101(2018).

    [48] N A AGHAMIRI, F HUTH, A J HUBER et al. Hyperspectral time-domain terahertz nano-imaging. Optics Express, 27, 24231-24242(2019).

    [49] M TAMAGNONE, A AMBROSIO, K CHAUDHARY et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Science Advances, 4, eaat7189(2018).

    [50] X G XU, B G GHAMSARI, J-H JIANG et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nature Communications, 5, 1-6(2014).

    [51] S DAI, Q MA, T ANDERSEN et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Communications, 6, 6963(2015).

    [52] B DEUTSCH, R HILLENBRAND, L NOVOTNY. Near-field amplitude and phase recovery using phase-shifting interferometry. Optics Express, 16, 494-501(2008).

    [53] C GIRARD, A DEREUX. Near-field optics theories. Reports on Progress in Physics, 59, 657-699(1996).

    [54] X CHEN, D HU, R MESCALL et al. Modern scattering‐type scanning near‐field optical microscopy for advanced material research. Advanced Materials, 31, 1804774(2019).

    [55] B KNOLL, F KEILMANN. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Optics Communications, 182, 321-328(2000).

    [56] N OCELIC, A HUBER, R HILLENBRAND. Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters, 89, 101124(2006).

    [57] I STEFANON, S BLAIZE, A BRUYANT et al. Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope. Optics Express, 13, 5553-5564(2005).

    [58] O J F MARTIN, C GIRARD. Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Applied Physics Letters, 70, 705-707(1997).

    [59] A CVITKOVIC, N OCELIC, R HILLENBRAND. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Optics Express, 15, 8550-8565(2007).

    [60] R HILLENBRAND, F KEILMANN. Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy. Applied Physics Letters, 80, 25-27(2002).

    [61] S MASTEL, M B LUNDEBERG, P ALONSO-GONZÁLEZ et al. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Letters, 17, 6526-6533(2017).

    [62] F MOOSHAMMER, M PLANKL, T SIDAY et al. Quantitative terahertz emission nanoscopy with multiresonant near-field probes. Optics Letters, 46, 3572-3575(2021).

    [63] X ZHANG, X ZHANG, Z ZHANG et al. Time-domain-filtered terahertz nanoscopy of intrinsic light–matter interactions. Nano Letters, 24, 15008-15015(2024).

    [64] C MAISSEN, S CHEN, E NIKULINA et al. Probes for ultrasensitive thz nanoscopy. ACS Photonics, 6, 1279-1288(2019).

    [65] R H J KIM, J M PARK, S J HAEUSER et al. A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM). Review of Scientific Instruments, 94, 043702(2023).

    [66] R JING, R A VITALONE, S XU et al. Phase-resolved terahertz nanoimaging of WTe2 microcrystals. Physical Review B, 107, 043702(2023).

    [67] S CHEN, A BYLINKIN, Z WANG et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nature Communications, 13, 1374(2022).

    [68] T ZHANG, S CHEN, P S PETKOV et al. Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature, 638, 411-417(2025).

    [69] E H HWANG, SARMA S DAS. Dielectric function, screening, and plasmons in two-dimensional graphene. Physical Review B, 75, 205418(2007).

    [70] A BOSTWICK, F SPECK, T SEYLLER et al. Observation of plasmarons in quasi-freestanding doped graphene. Science, 328, 999-1002(2010).

    [71] A BOSTWICK, T OHTA, T SEYLLER et al. Quasiparticle dynamics in graphene. Nature Physics, 3, 36-40(2007).

    [72] L JU, B GENG, J HORNG et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 6, 630-634(2011).

    [73] P-Y CHEN, H HUANG, D AKINWANDE et al. Graphene-based plasmonic platform for reconfigurable terahertz nanodevices. ACS Photonics, 1, 647-654(2014).

    [74] X CAI, A B SUSHKOV, M M JADIDI et al. Plasmon-enhanced terahertz photodetection in graphene. Nano Letters, 15, 4295-4302(2015).

    [75] I CRASSEE, M ORLITA, M POTEMSKI et al. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Letters, 12, 2470-2474(2012).

    [76] P ALONSO-GONZÁLEZ, A Y NIKITIN, Y GAO et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nature Nanotechnology, 12, 31-35(2016).

    [77] M B LUNDEBERG, Y D GAO, R ASGARI et al. Tuning quantum nonlocal effects in graphene plasmonics. Science, 357, 187-190(2017).

    [78] J E MOORE. The birth of topological insulators. Nature, 464, 194-198(2010).

    [79] PIETRO P DI, M ORTOLANI, O LIMAJ et al. Observation of Dirac plasmons in a topological insulator. Nature Nanotechnology, 8, 556-560(2013).

    [80] A POLITANO, V M SILKIN, I A NECHAEV et al. Interplay of surface and dirac plasmons in topological insulators: The case of Bi2Se3. Physical Review Letters, 115, 216802(2015).

    [81] F GIORGIANNI, E CHIADRONI, A ROVERE et al. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nature Communications, 7, 11421(2016).

    [82] E A A POGNA, L VITI, A POLITANO et al. Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy. Nature Communications, 12, 6672(2021).

    [83] S V DORDEVIC, M S WOLF, N STOJILOVIC et al. Signatures of charge inhomogeneities in the infrared spectra of topological insulators Bi2Se3, Bi2Te3 and Sb2Te3. Journal of Physics: Condensed Matter, 25, 075501(2013).

    [84] P K VENUTHURUMILLI, X WEN, V IYER et al. Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se. ACS Photonics, 6, 2492-2498(2019).

    [85] PIETRO P DI, N ADHLAKHA, F PICCIRILLI et al. Terahertz tuning of dirac plasmons in Bi2Se3 topological insulator. Physical Review Letters, 124, 226403(2020).

    [86] Y LIU, T LOW, P P RUDEN. Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities. Physical Review B, 93, 165402(2016).

    [87] E A A POGNA, V PISTORE, L VITI et al. Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies. Nature Communications, 15, 2373(2024).

    [88] Z ZHENG, J CHEN, Y WANG et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Advanced Materials, 30, 1705318(2018).

    [89] OLIVEIRA T V A G DE, T NÖRENBERG, G ÁLVAREZ‐PÉREZ et al. Nanoscale‐confined terahertz polaritons in a van der Waals crystal. Advanced Materials, 33, 2005777(2020).

    [90] T NÖRENBERG, G ÁLVAREZ-PÉREZ, M OBST et al. Germanium monosulfide as a natural platform for highly anisotropic thz polaritons. ACS Nano, 16, 20174-20185(2022).

    [91] M OBST, T NÖRENBERG, G ÁLVAREZ-PÉREZ et al. Terahertz twistoptics–engineering canalized phonon polaritons. ACS Nano, 17, 19313-19322(2023).

    [92] G HU, Q OU, G SI et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).

    [93] J DUAN, N CAPOTE-ROBAYNA, J TABOADA-GUTIÉRREZ et al. Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Letters, 20, 5323-5329(2020).

    [94] Z ZHENG, F SUN, W HUANG et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Letters, 20, 5301-5308(2020).

    [95] M CHEN, X LIN, T H DINH et al. Configurable phonon polaritons in twisted α-MoO3. Nature Materials, 19, 1307-1311(2020).

    [96] J DUAN, G ÁLVAREZ-PÉREZ, C LANZA et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nature Materials, 22, 867-872(2023).

    [97] C WANG, Y XIE, J MA et al. Twist-angle and thickness-ratio tuning of plasmon polaritons in twisted bilayer van der Waals films. Nano Letters, 23, 6907-6913(2023).

    [98] Y Xie, C Wang, F Fei et al. Tunable optical topological transitions of plasmon polaritons in WTe2 van der Waals films. Light: Science & Applications, 12, 193(2023).

    Qing WANG, Xiaoyu YANG, Pengwei LI, Shu CHEN. Research progress on terahertz polaritons in low-dimensional materials (invited)[J]. Infrared and Laser Engineering, 2025, 54(3): 20250058
    Download Citation