• Acta Optica Sinica
  • Vol. 37, Issue 4, 416001 (2017)
Tian Zhenghao1、*, Si Changfeng1, Qu Wenshan2, Guo Kunping1, Pan Saihu1, Gao Zhixiang2, Xu Tao1, and Wei Bin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0416001 Cite this Article Set citation alerts
    Tian Zhenghao, Si Changfeng, Qu Wenshan, Guo Kunping, Pan Saihu, Gao Zhixiang, Xu Tao, Wei Bin. High-Performance Organic Photovoltaics Using Solution-Processed Graphene Oxide[J]. Acta Optica Sinica, 2017, 37(4): 416001 Copy Citation Text show less
    References

    [1] Jo M Y, Do T T, Ha Y E, et al. Enhanced efficiency in polymer solar cells by incorporation of phenothiazine-based conjugated polymer electrolytes[J]. Organic Electronics, 2015, 16: 18-25.

    [2] Choi S, Zhou Y, Haske W, et al. ITO-free large-area flexible organic solar cells with an embedded metal grid[J]. Organic Electronics, 2015, 17: 349-354.

    [3] Cao Jing, Zhan Zhen, Liu Pengyi. Optical simulation based on P3HT: PCBM bulk-heterojunction solar cells: a comparison of normal and inverted structures of device[J]. Acta Optica Sinica, 2013, 33(3): 0323004.

    [4] Chen G, Wang T, Li C, et al. Enhanced photovoltaic performance in inverted polymer solar cells using Li ion doped ZnO cathode buffer layer[J]. Organic Electronics, 2016, 36: 50-56.

    [5] Xiao Xiao, Xu Defu, Xiao Zhigang, et al. Study on enhancement effects of a grating electrode inorganic solar cells[J]. Acta Optica Sinica, 2015, 35(s1): s116001.

    [6] Zhang Jian, Yang Xiucheng, Feng Xiaodong. Research progress of organic solar cells structure[J]. Electronic Components and Materials, 2012, 31(11): 75-78.

    [7] Huang Linquan, Zhou Lingyu, Yu Wei, et al. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells[J]. Acta Physica Sinica, 2015, 64(3): 26-35.

    [8] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010, 4(6): 3169-3174.

    [9] Shrotriya V, Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells[J]. Applied Physics Letters, 2006, 88(7): 073508.

    [10] Han S, Shin W S, Seo M, et al. Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes[J]. Organic Electronics, 2009, 10(5): 791-797.

    [11] Yip H L, Jen A K Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells[J]. Energy & Environmental Science, 2012, 5(3): 5994-6011.

    [12] Hao Zhihong, Hu Ziyang, Zhang Jianjun, et al. Influence of doped PEDOT:PSS on performance of polymer solar cells[J]. Acta Physica Sinica, 2011, 60(11): 556-562.

    [13] Li G, Shrotriya V, Yao Y, et al. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)[J]. Journal of Applied Physics, 2005, 98(4): 043704.

    [14] Liu J, Durstock M, Dai L. Graphene oxide derivatives as hole-and electron-extraction layers for high-performance polymer solar cells[J]. Energy & Environmental Science, 2014, 7(4): 1297-1306.

    [15] Wan X, Long G, Huang L, et al. Graphene-a promising material for organic photovoltaic cells[J]. Advanced Materials, 2011, 23(45): 5342-5358.

    [16] Stratakis E, Stylianakis M M, Koudoumas E, et al. Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement[J]. Nanoscale, 2013, 5(10): 4144-4150.

    [17] Chen Wei, Li Fushan, Guo Tailiang. Applications of graphene in optoelectronic devices[J]. Science & Technology Review, 2015, 33(5): 34-38.

    [18] Jiang Lili, Lu Xiong. Graphene applications in solar cells[J]. Journal of Inorganic Materials, 2012, 27(11): 1129-1137.

    [19] Li Xing’ao, Ren Mingwei, Ren Ruiyi, et al. The application and progress of graphene for organic optoelectronic devices[J]. Materials Review, 2012, 26(21): 8-12.

    [20] Wang H, Feng H, Li J. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage[J]. Small, 2014, 10(11): 2165-2181.

    [21] Liu Z, Lau S P, Yan F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chemical Society Reviews, 2015, 44(15): 5638-5679.

    [22] Yin Fang, Chen Dizhao, Liu Jiajia, et al. Preparation technology and thermostability of graphite oxide[J]. Journal of Materials Science and Engineering, 2013, 31(3): 336-340, 408.

    [23] Yang Yunshang, Zhang Bin, Zhang Yingpeng. Preparation and application research in composite of graphene oxide[J]. Applied Chemical Industry, 2013, 42(6): 1138-1141.

    [24] Wan Chen, Peng Tongjiang, Sun Hongjuan, et al. Preparation and humidity-sensitive properties of graphene oxide in different oxidation degree[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(5): 915-921.

    [25] Deng Yao, Huang Xiaorong, Wu Xiaoling. Review on graphene oxide composites[J]. Materials Review, 2012, 26(15): 84-87.

    [26] Chuchmaa A, Palewicz M, Sikora A, et al. Influence of graphene oxide interlayer on PCE value of polymer solar cells[J]. Synthetic Metals, 2013, 169(2): 33-40.

    [27] Xu Jia, Wu Sida, Liu Jiang, et al. Noise-like pulsed Raman fiber lasers using graphene oxide saturable absorber[J]. Chinese J Lasers, 2014, 41(3): 0302006.

    [28] Liu J, Xue Y, Gao Y, et al. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells[J]. Advanced Materials, 2012, 24(17): 2228-2233.

    [29] Manzano-Ramírez A, López-Naranjo E J, Soboyejo W, et al. A review on the efficiency of graphene-based BHJ organic solar cells[J]. Journal of Nanomaterials, 2015: 1-15.

    [30] Hu X, Xiong J, Tang Y, et al. Interface modification of polymer solar cells using graphene oxide and TiO2 NPs[J]. Physica Status Solidi A, 2015, 212(3): 585-590.

    [31] Wang T, Chen C, Guo K, et al. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers[J]. Chinese Physics B, 2016, 25(3): 038402.

    [32] Yamashita D, Ishizaki A, Yamamoto T. In situ measurements of work function of indium tin oxide after UV/ozone treatment[J]. South-Western College Pub, 1995, 56(9): 1445-1447.

    [33] Mason M G, Hung L S, Tang C W, et al. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices[J]. Journal of Applied Physics, 1999, 86(3): 1688-1692.

    [34] Li Yanping, Yu Huangzhong, Dong Yifan, et al. Anode interface modification of organic solar cells with solution-prepared MoO3[J]. Progress in Chemistry, 2016(8): 1170-1185.

    [35] Nagashima A, Nuka K, Itoh H, et al. Electronic states of monolayer graphite formed on TiC(111) surface[J]. Surface Science, 1993, 291(1): 93-98.

    [36] Liu Si, Tu Wenmao, Liu Xiang, et al. Study on low temperature preparation of graphene oxide[J]. Journal of Wuhan University of Technology, 2012, 34(9): 10-13.

    [37] Liu Yanzhen, Liu Yongfeng, Yang Yonggang, et al. The effect of thermal treatment at low temperatures on graphene oxide films[J]. New Carbon Materials, 2011, 26(1): 41-45.

    CLP Journals

    [1] Gao Xiuyun, Zhang Ye, Cui Yanxia, Liu Yanzhen, Li Guohui, Shi Linlin, Hao Yuying. Research Progress in Organic Photomultiplication Photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70001

    [2] Sun Bin, Yang Youchang, Wan Meng, Xie Feifeng. Simulation Analysis on Influence of Metal Nanograting on Graphene Filtering[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102401

    [3] Li Xue, Zhao Yuhan, Peng Hui, Zhang Jian, Li Chuannan, Wang Jin. Solar Cells with Surface Modified Cs-Doped ZnO Nanorod Array as Electron Transporting Layer[J]. Acta Optica Sinica, 2018, 38(7): 731001

    Tian Zhenghao, Si Changfeng, Qu Wenshan, Guo Kunping, Pan Saihu, Gao Zhixiang, Xu Tao, Wei Bin. High-Performance Organic Photovoltaics Using Solution-Processed Graphene Oxide[J]. Acta Optica Sinica, 2017, 37(4): 416001
    Download Citation