• Photonics Research
  • Vol. 10, Issue 9, 2066 (2022)
Xingyu Chen, Rongbin Su*, Jin Liu, Juntao Li, and Xue-Hua Wang
Author Affiliations
  • State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510000, China
  • show less
    DOI: 10.1364/PRJ.462318 Cite this Article Set citation alerts
    Xingyu Chen, Rongbin Su, Jin Liu, Juntao Li, Xue-Hua Wang. Scalable and highly efficient approach for an on-chip single-photon source[J]. Photonics Research, 2022, 10(9): 2066 Copy Citation Text show less
    References

    [1] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135-174(2007).

    [2] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    [3] Z. Qi, Y. Li, Y. Huang, J. Feng, Y. Zheng, X. Chen. A 15-user quantum secure direct communication network. Light Sci. Appl., 10, 183(2021).

    [4] C. Schimpf, M. Reindl, D. Huber, B. Lehner, F. S. C. da Silva, S. Manna, M. Vyvlecka, P. Walther, A. Rastelli. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv., 7, eabe8905(2021).

    [5] K. Azuma, K. Tamaki, H.-K. Lo. All-photonic quantum repeaters. Nat. Commun., 6, 6787(2015).

    [6] X. Liu, J. Hu, Z.-F. Li, X. Li, P.-Y. Li, P.-J. Liang, Z.-Q. Zhou, C.-F. Li, G.-C. Guo. Heralded entanglement distribution between two absorptive quantum memories. Nature, 594, 41-45(2021).

    [7] S. Brito, A. Canabarro, R. Chaves, D. Cavalcanti. Statistical properties of the quantum internet. Phys. Rev. Lett., 124, 210501(2020).

    [8] S. Wehner, D. Elkouss, R. Hanson. Quantum internet: a vision for the road ahead. Science, 362, eaam9288(2018).

    [9] H. Ollivier, S. E. Thomas, S. C. Wein, I. M. de Buy Wenniger, N. Coste, J. C. Loredo, N. Somaschi, A. Harouri, A. Lemaitre, I. Sagnes, L. Lanco, C. Simon, C. Anton, O. Krebs, P. Senellart. Hong-Ou-Mandel interference with imperfect single photon sources. Phys. Rev. Lett., 126, 063602(2021).

    [10] S. Hepp, M. Jetter, S. L. Portalupi, P. Michler. Semiconductor quantum dots for integrated quantum photonics. Adv. Quantum Technol., 2, 1900020(2019).

    [11] P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 12, 1026-1039(2017).

    [12] B. Chen, Y. Wei, T. Zhao, S. Liu, R. Su, B. Yao, Y. Yu, J. Liu, X. Wang. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol., 16, 302-307(2021).

    [13] Ł. Dusanowski, D. Köck, E. Shin, S.-H. Kwon, C. Schneider, S. Höfling. Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators. Nano Lett., 20, 6357-6363(2020).

    [14] J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, X. Wang. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol., 14, 586-593(2019).

    [15] H. Ollivier, I. Maillette de Buy Wenniger, S. Thomas, S. C. Wein, A. Harouri, G. Coppola, P. Hilaire, C. Millet, A. Lemaître, I. Sagnes, O. Krebs, L. Lanco, J. C. Loredo, C. Antón, N. Somaschi, P. Senellart. Reproducibility of high-performance quantum dot single-photon sources. ACS Photon., 7, 1050-1059(2020).

    [16] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton. A bright and fast source of coherent single photons. Nat. Nanotechnol., 16, 399-403(2021).

    [17] H. Wang, Y.-M. He, T. H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M. C. Chen, J. Qin, X. Yang, R.-Z. Liu, Z. C. Duan, J. P. Li, S. Gerhardt, K. Winkler, J. Jurkat, L.-J. Wang, N. Gregersen, Y.-H. Huo, Q. Dai, S. Yu, S. Höfling, C.-Y. Lu, J.-W. Pan. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770-775(2019).

    [18] A. V. Kuhlmann, J. Houel, D. Brunner, A. Ludwig, D. Reuter, A. D. Wieck, R. J. Warburton. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum., 84, 073905(2013).

    [19] F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, A. M. Fox. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol., 13, 835-840(2018).

    [20] U. M. Gür, M. Mattes, S. Arslanagić, N. Gregersen. Elliptical micropillar cavity design for highly efficient polarized emission of single photons. Appl. Phys. Lett., 118, 061101(2021).

    [21] M. Varnava, D. E. Browne, T. Rudolph. How good must single photon sources and detectors be for efficient linear optical quantum computation?. Phys. Rev. Lett., 100, 060502(2008).

    [22] J. C. Loredo, M. A. Broome, P. Hilaire, O. Gazzano, I. Sagnes, A. Lemaitre, M. P. Almeida, P. Senellart, A. G. White. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett., 118, 130503(2017).

    [23] H. Wang, J. Qin, X. Ding, M.-C. Chen, S. Chen, X. You, Y.-M. He, X. Jiang, L. You, Z. Wang, C. Schneider, J. J. Renema, S. Höfling, C.-Y. Lu, J.-W. Pan. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett., 123, 250503(2019).

    [24] M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113, 093603(2014).

    [25] J. Q. Grim, A. S. Bracker, M. Zalalutdinov, S. G. Carter, A. C. Kozen, M. Kim, C. S. Kim, J. T. Mlack, M. Yakes, B. Lee, D. Gammon. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater., 18, 963-969(2019).

    [26] R. Uppu, H. T. Eriksen, H. Thyrrestrup, A. D. Uğurlu, Y. Wang, S. Scholz, A. D. Wieck, A. Ludwig, M. C. Löbl, R. J. Warburton, P. Lodahl, L. Midolo. On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source. Nat. Commun., 11, 3782(2020).

    [27] H. Thyrrestrup, G. Kiršanskė, H. Le Jeannic, T. Pregnolato, L. Zhai, L. Raahauge, L. Midolo, N. Rotenberg, A. Javadi, R. Schott, A. D. Wieck, A. Ludwig, M. C. Löbl, I. Söllner, R. J. Warburton, P. Lodahl. Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide. Nano Lett., 18, 1801-1806(2018).

    [28] R. Uppu, F. T. Pedersen, Y. Wang, C. T. Olesen, C. Papon, X. Zhou, L. Midolo, S. Scholz, A. D. Wieck, A. Ludwig, P. Lodahl. Scalable integrated single-photon source. Sci. Adv., 6, eabc8268(2020).

    [29] M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, A. M. Fox. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano Lett., 14, 6997-7002(2014).

    [30] G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, J. J. Finley. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett., 15, 5208-5213(2015).

    [31] P. Stepanov, A. Delga, X. Zang, J. Bleuse, E. Dupuy, E. Peinke, P. Lalanne, J.-M. Gérard, J. Claudon. Quantum dot spontaneous emission control in a ridge waveguide. Appl. Phys. Lett., 106, 041112(2015).

    [32] S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, A. J. Shields. Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot. Appl. Phys. Lett., 109, 151112(2016).

    [33] J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, K. Srinivasan. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys. Rev. Appl., 9, 064019(2018).

    [34] C. L. Dreeßen, C. Ouellet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, P. Lodahl. Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides. Quantum Sci. Technol., 4, 015003(2018).

    [35] D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, R. J. Warburton. A gated quantum dot strongly coupled to an optical microcavity. Nature, 575, 622-627(2019).

    [36] M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, K. Srinivasan. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl. Phys. Lett., 99, 041102(2011).

    [37] L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, D. Englund. Efficient photon collection from a nitrogen vacancy center in a circular Bullseye grating. Nano Lett., 15, 1493-1497(2015).

    [38] B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, J. Liu. Design for hybrid circular Bragg gratings for a highly efficient quantum-dot single-photon source. J. Korean Phys. Soc., 73, 1502-1505(2018).

    [39] L. Rickert, T. Kupko, S. Rodt, S. Reitzenstein, T. Heindel. Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings. Opt. Express, 27, 36824-36837(2019).

    [40] S. Kolatschek, C. Nawrath, S. Bauer, J. Huang, J. Fischer, R. Sittig, M. Jetter, S. L. Portalupi, P. Michler. Bright Purcell enhanced single-photon source in the telecom O-band based on a quantum dot in a circular Bragg grating. Nano Lett., 21, 7740-7745(2021).

    [41] R. Harper, S. T. Flammia, J. J. Wallman. Efficient learning of quantum noise. Nat. Phys., 16, 1184-1188(2020).

    [42] S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa. A gallium nitride single-photon source operating at 200 K. Nat. Mater., 5, 887-892(2006).

    [43] J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. de Miranda Cardoso, J. D. Song, A. Badolato, K. Srinivasan. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum., 88, 023116(2017).

    [44] C. Antón, J. C. Loredo, G. Coppola, H. Ollivier, N. Viggianiello, A. Harouri, N. Somaschi, A. Crespi, I. Sagnes, A. Lemaître, L. Lanco, R. Osellame, F. Sciarrino, P. Senellart. Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip. Optica, 6, 1471-1477(2019).

    Xingyu Chen, Rongbin Su, Jin Liu, Juntao Li, Xue-Hua Wang. Scalable and highly efficient approach for an on-chip single-photon source[J]. Photonics Research, 2022, 10(9): 2066
    Download Citation