[1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).
[2] Wu S, Qu H, Tu H et al. Progresses towards the application of terahertz technologies[J]. Application of Electronic Technique, 45, 3-7, 18(2019).
[3] Xie S, Li H R, Li L X et al. Survey of terahertz communication technology[J]. Journal on Communications, 41, 168-186(2020).
[4] Feng W, Wei S T, Cao J C. 6G technology development vision and terahertz communication[J]. Acta Physica Sinica, 70, 244303(2021).
[5] Liu L P, Jian M N, Chen Y J. Development and challenges of terahertz technology for 6G applications[J]. ZTE Technology Journal, 27, 17-24(2021).
[6] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 432, 376-379(2004).
[7] Coleman S, Grischkowsky D. Parallel plate THz transmitter[J]. Applied Physics Letters, 84, 654-656(2004).
[8] Shi Z W, Cao X X, Wen Q Y et al. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 6, 1700620(2018).
[9] Ma L M, Xu H, Liu Y H et al. Broadband terahertz absorber based on graphene metamaterial[J]. Acta Optica Sinica, 42, 0923001(2022).
[10] Zhang Z W, Zhao Y J, Miao Y X et al. Terahertz nondestructive testing imaging technology based on linear frequency modulation mechanism[J]. Acta Optica Sinica, 42, 0411002(2022).
[11] Yang J P, Wang M C, Deng H et al. Dual-band terahertz sensor based on metamaterial absorber integrated microfluidic[J]. Acta Optica Sinica, 41, 2328001(2021).
[12] Li Y F, Wang C L, Zhang N et al. Analysis and design of terahertz photonic crystal fibers by an effective-index method[J]. Applied Optics, 45, 8462-8465(2006).
[13] Lee Y S, Kim S, Oh K. Highly birefringent slotted-porous-core photonic crystal fiber with elliptical-hole cladding for terahertz applications[J]. Current Optics and Photonics, 6, 129-136(2022).
[14] Kim S, Kee C S, Lee J M. Single-mode condition and dispersion of terahertz photonic crystal fiber[J]. Journal of the Optical Society of Korea, 11, 97-100(2007).
[15] Zheng X, Wu Y J, Yu H Y. Key technology & application status of the photonic crystal fiber used in fiber optic gyroscope[J]. Navigation Positioning and Timing, 4, 1-8(2017).
[16] Wang X K, Li J S, Li S G et al. Design and research of a broadband mode-division multiplexer based on three-core photonic crystal fiber[J]. Acta Physica Sinica, 71, 044206(2022).
[17] Dinish U S, Balasundaram G, Chang Y T et al. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe[J]. Journal of Biophotonics, 7, 956-965(2014).
[18] Wu Y J, Ye H Q, Han J et al. Supercontinuum generation degradation of 1040 nm laser pumped photonic crystal fibers[J]. Spectroscopy and Spectral Analysis, 41, 3588-3594(2021).
[19] Rong Q Z, Qiao X G, Yang H Z et al. Mode-locked soliton fiber laser using an intracavity polarization maintaining photonics crystal fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 406-410(2014).
[20] Liu J T, Zhao N, Chen Y et al. Tm/Al Co-doped silica glass prepared by laser additive manufacturing technology for 2‑μm photonic crystal fiber laser[J]. Journal of Lightwave Technology, 38, 1486-1491(2020).
[21] Hui Z Q, Qu M J, Li X H et al. SnS nanosheets for harmonic pulses generation in near infrared region[J]. Nanotechnology, 31, 485706(2020).
[22] Yang T Y, Ding C, Ziolkowski R W et al. A scalable THz photonic crystal fiber with partially-slotted core that exhibits improved birefringence and reduced loss[J]. Journal of Lightwave Technology, 36, 3408-3417(2018).
[23] Wang C C, Zhang F, Wu G Z. Study on mode characteristics of asymptotic terahertz porous photonic crystal fibers[J]. Laser Technology, 43, 768-772(2019).
[25] Di Z G, Wang B, Yang J T et al. Design of photonic crystal fiber with high birefringence and low dispersion[J]. Laser Journal, 42, 25-28(2021).
[26] Hasanuzzaman G K M, Rana S, Habib M S. A novel low loss, highly birefringent photonic crystal fiber in THz regime[J]. IEEE Photonics Technology Letters, 28, 899-902(2016).
[27] Liang J, Ren LY, Chen N N et al. Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation[J]. Optics Communications, 295, 257-261(2013).
[28] Islam M R, Kabir F M, Khandoker M et al. A novel hollow core terahertz refractometric sensor[J]. Sensing and Bio-Sensing Research, 25, 100295(2019).
[29] Wu Z Q, Zhou X Y, Xia H D et al. Low-loss polarization-maintaining THz photonic crystal fiber with a triple-hole core[J]. Applied Optics, 56, 2288-2293(2017).
[30] Olszewski J, Szpulak M, Urbanczyk W. Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers[J]. Optics Express, 13, 6015-6022(2005).
[31] Sheng X Z, Lou S Q, Yin G L et al. A high-compatibility low-bending-loss photonic crystal fiber with standard single mode fiber[J]. Acta Physica Sinica, 62, 104217(2013).
[32] Islam M S, Faisal M, Razzak S M A. Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra low loss transmission[J]. IEEE Journal of Quantum Electronics, 53, 8500608(2017).
[33] Yang T Y, Ding C, Ziolkowski R W et al. Circular hole ENZ photonic crystal fibers exhibit high birefringence[J]. Optics Express, 26, 17264-17278(2018).
[34] Brechet F, Marcou J, Pagnoux D et al. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method[J]. Optical Fiber Technology, 6, 181-191(2000).