• Chinese Journal of Lasers
  • Vol. 48, Issue 9, 0904002 (2021)
Peng Feng1、2, Feng Tang1、2、*, Xiangzhao Wang1、2, Yunjun Lu1、2, Jinghao Xu1, Fudong Guo1, and Guoxian Zhang1
Author Affiliations
  • 1Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202148.0904002 Cite this Article Set citation alerts
    Peng Feng, Feng Tang, Xiangzhao Wang, Yunjun Lu, Jinghao Xu, Fudong Guo, Guoxian Zhang. Dual-Hole Point Diffraction Interferometer for Measuring the Wavefront Aberration of an Imaging System[J]. Chinese Journal of Lasers, 2021, 48(9): 0904002 Copy Citation Text show less
    References

    [1] Shirai T, Barnes T H, Haskell T G et al. Adaptive wave-front correction by means of all-optical feedback interferometry[J]. Optics Letters, 25, 773-775(2000).

    [2] Malacara D. Optical shop testing[M]. Hoboken: John Wiley & Sons(2007).

    [3] Miyakawa R H. Wavefront metrology for high resolution optical systems[EB/OL]. [2020-11-09]. https://search.proquest.com/docview/896620201

    [4] Liu K, Li Y Q. At-wavelength interferometry of projection optics for extreme ultraviolet lithography[J]. Chinese Journal of Lasers, 36, 257-262(2009).

    [5] Ohmura Y, Tsuge Y, Hirayama T et al. High-order aberration control during exposure for leading-edge lithography projection optics[J]. Proceedings of SPIE, 9780, 97800Y(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2504921

    [6] Shen F, Jiang W H. The measurement error of wavefront phase with shack-hartmann wavefront sensor[J]. Acta Optica Sinica, 20, 666-671(2000).

    [7] Dai X Y, Tan Y, Ren G et al. Analysis of image quality detection performance of scanning hartmann technology[J]. Acta Optica Sinica, 40, 0712002(2020).

    [8] Howes W L. Lens collimation and testing using a Twyman-Green interferometer with a self-pumped phase-conjugating mirror[J]. Applied Optics, 25, 473-474(1986). http://europepmc.org/abstract/MED/20445700

    [9] Miao E L, Zhang J, Gu Y Q et al. Measurement error analysis of high precision Fizeau interferometer for lithography projection objective[J]. Chinese Journal of Lasers, 37, 2029-2034(2010).

    [10] Li J, Tang F, Wang X Z et al. System errors analysis of grating lateral shearing interferometer[J]. Chinese Journal of Lasers, 41, 0508006(2014).

    [11] Chen X, Gramaglia M, Yeazell J A et al. Phase-shifting interferometry with uncalibrated phase shifts[J]. Applied Optics, 39, 585-591(2000).

    [12] Chen Y K, Li Y, Wang C et al. Wavefront analysis method of pinhole point-diffraction based on waveguide theory[J]. Acta Optica Sinica, 39, 1112001(2019).

    [13] Smartt R N, Strong J. Point-diffraction interferometer[J]. Journal of the Optical Society of America, 13, 198(1974).

    [14] Medecki H, Tejnil E, Goldberg K A et al. Phase-shifting point diffraction interferometer[J]. Optics Letters, 21, 1526-1528(1996).

    [15] Wang C, Zhou Y, Lu Q et al. Research on reflective polarization phase-shifting dynamic point diffraction interferometry[J]. Chinese Journal of Lasers, 47, 1004003(2020).

    [16] Goldberg K A, Naulleau P P, Denham P E et al. At-wavelength alignment and testing of the 0.3 NA MET optic[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 22, 2956(2004). http://scitation.aip.org/content/avs/journal/jvstb/22/6/10.1116/1.1815303

    [17] Naulleau P P, Goldberg K A, Lee S H et al. Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy[J]. Applied Optics, 38, 7252-7263(1999).

    [18] Sugisaki K, Hasegawa M, Okada M et al. EUVA’s challenges toward 0.1 nm accuracy in EUV at-wavelength interferometry[M]. Berlin: Springer, 252-266(2006).

    [19] Murakami K, Saito J, Ota K et al. Development of an experimental EUV interferometer for benchmarking several EUV wavefront metrology schemes[J]. Proceedings of SPIE, 5037, 257-264(2003).

    [20] Hasegawa T, Ouchi C, Hasegawa M et al. EUV wavefront metrology system in EUVA[J]. Proceedings of SPIE, 5374, 797(2004). http://spie.org/Publications/Proceedings/Paper/10.1117/12.536327

    [21] Feng P, Tang F, Wang X Z et al. Dual-fiber point diffraction interferometer to measure the wavefront aberration of an imaging system[J]. Applied Optics, 59, 3093-3096(2020). http://www.researchgate.net/publication/339635273_Dual-fiber_point_diffraction_interferometer_formeasuring_the_wavefront_aberration_of_imagingsystem

    [22] Dong G J, Tang F, Wang X Z et al. Study on high precision magnification measurement of imaging systems[J]. Acta Optica Sinica, 38, 0712007(2018).

    [23] Goldberg K A. Extreme ultraviolet interferometry[R]. Berkeley: Lawrence Berkeley National Lab (LBNL), 69-76(1997).

    [24] Evans C J. PVr-a robust amplitude parameter for optical surface specification[J]. Optical Engineering, 48, 043605(2009). http://spie.org/Publications/Journal/10.1117/1.3119307

    Peng Feng, Feng Tang, Xiangzhao Wang, Yunjun Lu, Jinghao Xu, Fudong Guo, Guoxian Zhang. Dual-Hole Point Diffraction Interferometer for Measuring the Wavefront Aberration of an Imaging System[J]. Chinese Journal of Lasers, 2021, 48(9): 0904002
    Download Citation