• Acta Optica Sinica
  • Vol. 40, Issue 4, 430001 (2020)
Wang Yuye1、2, Sun Zhongcheng1、2, Xu Degang1、2、*, Jiang Zhinan1、2, Mu Ning3, Yang Chuanyan3, Chen Tunan3, Feng Hua3, and Yao Jianquan1、2
Author Affiliations
  • 1School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
  • 3Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
  • show less
    DOI: 10.3788/AOS202040.0430001 Cite this Article Set citation alerts
    Wang Yuye, Sun Zhongcheng, Xu Degang, Jiang Zhinan, Mu Ning, Yang Chuanyan, Chen Tunan, Feng Hua, Yao Jianquan. Detection of Cerebral Ischemia Based on Terahertz Time-Domain Spectroscopy[J]. Acta Optica Sinica, 2020, 40(4): 430001 Copy Citation Text show less
    References

    [1] Denes A, Vidyasagar R, Feng J et al. Proliferating resident microglia after focal cerebral ischaemia in mice[J]. Journal of Cerebral Blood Flow & Metabolism, 27, 1941-1953(2007).

    [2] Kauppinen R A. Multiparametric magnetic resonance imaging of acute experimental brain ischaemia[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 80, 12-25(2014).

    [3] Gadian D G. Frackowiak R S J, Crockard H A, et al. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. I. Methodology[J]. Journal of Cerebral Blood Flow & Metabolism, 7, 199-206(1987).

    [4] Crockard H A, Gadian D G. Frackowiak R S J, et al. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes during ischaemia[J]. Journal of Cerebral Blood Flow & Metabolism, 7, 394-402(1987).

    [5] Cremers C H P, Vos P C et al. CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction[J]. Neuroradiology, 57, 897-902(2015).

    [6] Kidwell C S. Wintermark M, de Silva D A, et al. Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke[J]. Stroke, 44, 73-79(2013).

    [7] Liu J X, Du B, Deng Y Q et al. Terahertz-spectral identification of organic compounds based on differential PCA-SVM method[J]. Chinese Journal of Lasers, 46, 0614039(2019).

    [8] Liu Y D, Du X Y, Li B et al. Detection of benzoic acid in arrowroot by terahertz technology[J]. Laser & Optoelectronics Progress, 56, 041101(2019).

    [9] Wang Y Y, Wang L P, Li T et al. Terahertz characteristic absorption spectrometric analysis of homocysteine[J]. Acta Optica Sinica, 39, 1030003(2019).

    [10] Wang Y Y, Chen L Y, Xu D G et al. Three-dimensional reconstruction of rat brain trauma based on terahertz imaging[J]. Acta Optica Sinica, 39, 0317002(2019).

    [11] Taday P F, Bradley I V, Arnone D D. Terahertz pulse spectroscopy of biological materials: L-glutamic acid[J]. Journal of Biological Physics, 29, 109-115(2003).

    [12] Li Z. Research for the application of the terahertz time-domain spectroscopy (THz-TDS) in cerebral ischemia and glioma[D]. Chongqing: Third Military Medical University, 25-30(2014).

    [13] Zhang Z, Meng K, Zhu L G et al. Study on terahertz absorption characteristics of ischemic rat brain tissue[J]. Laser Technology, 40, 372-376(2016).

    [14] Longa Z, Weinstein R, Carlson S et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 20, 84-91(1989).

    Wang Yuye, Sun Zhongcheng, Xu Degang, Jiang Zhinan, Mu Ning, Yang Chuanyan, Chen Tunan, Feng Hua, Yao Jianquan. Detection of Cerebral Ischemia Based on Terahertz Time-Domain Spectroscopy[J]. Acta Optica Sinica, 2020, 40(4): 430001
    Download Citation