• Chinese Optics Letters
  • Vol. 21, Issue 1, 010501 (2023)
Zhenpeng Song1, Ziyang Li1, Xiaohu Shang1, Chaoyi Li2, Lingling Ma2、*, Yanqing Lu2, and Bingxiang Li1、2、**
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 2National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
  • show less
    DOI: 10.3788/COL202321.010501 Cite this Article Set citation alerts
    Zhenpeng Song, Ziyang Li, Xiaohu Shang, Chaoyi Li, Lingling Ma, Yanqing Lu, Bingxiang Li. Electrically switchable structural patterns and diffractions in a dual frequency nematic liquid crystal[J]. Chinese Optics Letters, 2023, 21(1): 010501 Copy Citation Text show less
    References

    [1] L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, Q. Li. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch. Adv. Opt. Mater., 2, 845(2014).

    [2] B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, Y. Q. Lu. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 26, 1590(2014).

    [3] W. Duan, L. L. Ma, P. Chen, W. Hu, Q. H. Wang, Y. Q. Lu. Patterned optical anisotropic film for generation of non-diffracting vortex beams. Appl. Phys. Lett., 120, 031101(2022).

    [4] T. Zhan, J. Y. Zou, J. G. Xiong, X. M. Liu, H. Chen, J. L. Yang, S. Liu, Y. J. Dong, S. T. Wu. Practical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lenses. Adv. Opt. Mater., 8, 1901360(2020).

    [5] K. Perera, A. Nemati, E. K. Mann, T. Hegmann, A. Jákli. Converging microlens array using nematic liquid crystals doped with chiral nanoparticles. ACS Appl. Mater., 13, 4574(2021).

    [6] L. L. Ma, S. B. Wu, W. Hu, C. Liu, P. Chen, H. Qian, Y. Wang, L. Chi, Y. Q. Lu. Self-assembled asymmetric microlenses for four-dimensional visual imaging. ACS Nano, 13, 13709(2019).

    [7] X. F. Zhang, B. Koz, H. K. Bisoyi, H. Wang, K. G. Gutierrez-Cuevas, M. E. McConney, T. J. Bunning, Q. Li. Electro- and photo-driven orthogonal switching of a helical superstructure enabled by an axially chiral molecular switch. ACS Appl. Mater., 12, 55215(2020).

    [8] H. C. Jau, Y. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Lin, T. J. Bunning, Q. Li. Gratings: light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch. Adv. Opt. Mater., 3, 165(2015).

    [9] Z. G. Zheng, Y. N. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, Q. Li. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature, 531, 352(2016).

    [10] Y. Xiang, H. Jing, W. Sun, H. Chen, G. Cipparrone, P. Pagliusi, M. Xu, G. Huang, E. Wang. Topological defects arrays and control of electro-convections in periodically photo-aligned bent-core nematics. J. Mol. Liq., 318, 114058(2020).

    [11] M. Li, P. Q. Zhang, J. Guo, X. S. Xie, Y. K. Liu, L. Bing, J. Y. Zhou, Y. Xiang. Phase controlled laser interference for tunable phase gratings in dye-doped nematic liquid crystals. Chin. Phys. Lett., 25, 108(2008).

    [12] B. X. Li, R. L. Xiao, S. V. Shiyanovskii, O. D. Lavrentovich. Soliton-induced liquid crystal enabled electrophoresis. Phys. Rev. Res., 2, 013178(2020).

    [13] P. G. D. Gennes, J. Prost. The Physics of Liquid Crystals(1993).

    [14] B. X. Li, V. Borshch, R. L. Xiao, S. Paladugu, T. Turiv, S. V. Shiyanovskii, O. D. Lavrentovich. Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals. Nat. Commun., 9, 2912(2018).

    [15] B. X. Li, R. L. Xiao, S. Paladugu, S. V. Shiyanovskii, O. D. Lavrentovich. Three-dimensional solitary waves with electrically tunable direction of propagation in nematics. Nat. Commun., 10, 3749(2019).

    [16] N. Éber, P. Salamon, Á. Buka. Electrically induced patterns in nematics and how to avoid them. Liq. Cryst. Rev., 4, 101(2016).

    [17] B. N. Zhang, H. Kitzerow. Pattern formation in a nematic liquid crystal mixture with negative anisotropy of the electric conductivity—a long-known system with “inverse” light scattering revisited. J. Phys. Chem. B, 120, 6865(2016).

    [18] J. M. Song, G. J. Choi, J. S. Gwag, Y. Sohn, J. H. Huh. Electrooptical threshold behavior of electroconvection in twisted nematic liquid crystal cells. J. Korean Phys. Soc., 70, 276(2017).

    [19] H. Zhao, L. Kramer. Zigzag structures and domain walls in electroconvection of nematic liquid crystal. Phys. Rev. E, 62, 5092(2000).

    [20] R. Williams. Domains in liquid crystals. J. Chem. Phys., 39, 384(1963).

    [21] A. Pianelli, J. Parka, P. Perkowski, R. Caputo, E. Otón, M. Mrukiewicz, R. Mazur, K. Sielezin, K. Garbat. Investigations of dual-frequency nematic liquid crystals doped with dichroic dye. Liq. Cryst., 46, 1001(2019).

    [22] M. Mrukiewicz, P. Perkowski, K. Garbat. Dielectric behaviour of binary dual-frequency nematics with low crossover frequencies. Liq. Cryst., 42, 1036(2015).

    [23] P. Kumar, U. S. Hiremath, C. V. Yelamaggad, A. G. Rossberg, K. S. Krishnamurthy. Electroconvection in a homeotropic bent-rod nematic liquid crystal beyond the dielectric inversion frequency. J. Phys. Chem. B, 112, 9753(2008).

    [24] S. W. Kang, L. C. Chien. Various pattern-forming states of nematic liquid crystal based on the sign inversion of dielectric anisotropy. Macromol. Res., 15, 396(2007).

    [25] R. Caputo, A. V. Sukhov, C. Umeton, R. F. Ushakov. Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures. J. Exp. Theor. Phys., 91, 1190(2000).

    [26] M. I. Barnik, A. R. Geivandov, V. V. Lazarev, S. P. Palto, S. V. Yakovlev. Optical phase modulation using dual-frequency nematic liquid crystals. Mol. Cryst. Liq. Cryst., 480, 49(2008).

    [27] K. S. Krishnamurthy, P. Kumar. Effect of waveform of the driving field on electroconvection near the dielectric inversion frequency. Phys. Rev. E, 93, 022706(2016).

    [28] S. W. Kang, S. Sprunt, L. C. Chien. Switchable diffraction gratings based on inversion of the dielectric anisotropy in nematic liquid crystals. Appl. Phys. Lett., 78, 3782(2001).

    [29] P. T. Lin, X. Liang, H. W. Ren, S. T. Wu. Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal. Appl. Phys. Lett., 85, 1131(2004).

    [30] H. Kogelnik. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J., 48, 2909(1969).

    [31] A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, Á. Buka. Nonstandard electroconvection and flexoelectricity in nematic liquid crystals. Phys. Rev. E, 77, 021705(2008).

    Data from CrossRef

    [1] S. A. Shvetsov, T. Orlova, A. V. Emelyanenko, A. S. Zolot’ko, H. L. Ong. Optical nonlinearity of a dual-frequency nematic liquid crystal via temperature-mediated mapping of dielectric anisotropy. Optics Express, 30, 47909(2022).

    Zhenpeng Song, Ziyang Li, Xiaohu Shang, Chaoyi Li, Lingling Ma, Yanqing Lu, Bingxiang Li. Electrically switchable structural patterns and diffractions in a dual frequency nematic liquid crystal[J]. Chinese Optics Letters, 2023, 21(1): 010501
    Download Citation