• Opto-Electronic Engineering
  • Vol. 44, Issue 4, 453 (2017)
Yuzhu Tang1、*, Wenying Ma1、2, Yaohua Wei1, and Weimin Wang3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.04.010.1 Cite this Article
    Yuzhu Tang, Wenying Ma, Yaohua Wei, Weimin Wang. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 2017, 44(4): 453 Copy Citation Text show less
    References

    [1] Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001, 409(6819): 490-493.

    [2] Longdell J J, Fraval E, Sellars M J, et al. Stopped light with storage times greater than one second using electromag-netically induced transparency in a solid[J]. Physical Review Letters, 2005, 95(6): 063601.

    [3] Yannopapas V, Paspalakis E, Vitanov N V. Electromagnetically induced transparency and slow light in an array of metallic nanoparticles[J]. Physical Review B, 2009, 80(3):1132-1136.

    [4] Camacho R M, Broadbent C J, Ali-Khan I, et al. All-optical delay of images using slow light[J]. Physical Review Letters, 2007, 98(4): 043902.

    [5] Panahpour A, Latifi H. Electromagnetic transparency and slow light in an isotropic 3D optical metamaterial, due to Fano-like coupling of Mie resonances in excitonic nano-sphere inclu-sions[J]. Optics Communications, 2010, 284(6): 1701-1710.

    [6] Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 3(6720): 594-598.

    [7] Zhang Shuang, Genov D A, Wang Yuan, et al. Plas-mon-induced transparency in metamaterials[J]. Physical Re-view Letters, 2008, 101(4): 047401.

    [8] Jin Xingri, Park J, Zheng Haiyu, et al. Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling[J]. Optics Express, 2011, 19(22): 21652-21657.

    [9] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Electromagneti-cally induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators[J]. Optics Express, 2012, 20(22): 24348-24355.

    [10] Han Zhanghua, Bozhevolnyi S I. Plasmon-induced transpar-ency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices[J]. Optics Express, 2011, 19(4): 3251-3257.

    [11] Papasimakis N, Fu Y H, Fedotov V A, et al. Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparen-cy[J]. Applied Physics Letters, 2009, 94(21): 211902.

    [12] Cao Wei, Singh R, Al-Naib I A, et al. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials[J]. Optics Letters, 2012, 37(16): 3366-3368.

    [13] Tamayama Y, Yasui K, Nakanishi T, et al. Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling[J]. Physical Review B, 2014, 89(7): 075120.

    [14] Qiao Shen, Zhang Yaxin, Zhao Yuncheng, et al. Mode cou-pling in terahertz metamaterials using sub-radiative and su-per-radiative resonators[J]. Journal of Applied Physics, 2015, 118(19): 193104.

    [15] He Xun, Ma Qi, Jia Peng, et al. Dynamic manipulation of electromagnetically induced transparency with MEMS met-amaterials[J]. Integrated Ferroelectrics, 2015, 161(1): 85-91.

    [16] Ma Yingfang, Li Zhongyang, Yang Yuanmu, et al. Plasmon- induced transparency in twisted Fano terahertz metamateri-als[J]. Optical Materials Express, 2011, 1(3): 391-399.

    [17] Shao Jian, Li Jiaqi, Li Jie, et al. Analogue of electromagneti-cally induced transparency by doubly degenerate modes in a U-shaped metamaterial[J]. Applied Physics Letters, 2013, 102(3): 034106.

    [18] Cao Wei, Singh R, Zhang Caihong, et al. Plasmon-induced transparency in metamaterials: active near field coupling be-tween bright superconducting and dark metallic mode reso-nators[J]. Applied Physics Letters, 2013, 103(10): 101106.

    [19] Kurter C, Tassin P, Zhang Lei, et al. Classical analogue of electromagnetically induced transparency with a met-al-superconductor hybrid metamaterial[J]. Physical Review Letters, 2011, 107(4): 043901.

    [20] Ding Jun, Arigong B, Ren Han, et al. Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator[J]. Plasmonics, 2015, 10(6): 1833- 1839.

    [21] Yao Gang, Ling Furi, Yue Jin, et al. Dynamically tunable gra-phene Plasmon-induced transparency in the terahertz region [J]. Journal of Lightwave Technology, 2016, 34(16): 3937-3942.

    [22] Sui Jiawei, Feng Ls. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect elec-tromagnetically induced transparency[J]. AIP Advances, 2014, 4(12): 127122.

    [23] Yang Lei, Fan Fei, Chen Meng, et al. Active terahertz met-amaterials based on liquid-crystal induced transparency and absorption[J]. Optics Communications, 2017, 382: 42-48.

    [24] Jin Xingri, Lu Yuehui, Park J, et al. Manipulation of electro-magnetically-induced transparency in planar metamaterials based on phase coupling[J]. Journal of Applied Physics, 2012, 111(7): 073101.

    Yuzhu Tang, Wenying Ma, Yaohua Wei, Weimin Wang. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 2017, 44(4): 453
    Download Citation