• Photonics Research
  • Vol. 8, Issue 5, 642 (2020)
Shaohua Gao1、2, Jiayi Wang1, Wenhua Li1, Xuanyi Yu1, Xinzheng Zhang1、3、7、*, Xiao Song1, Andrey Iljin4、8、*, Irena Drevensek-Olenik5, Romano A. Rupp1、6, and Jingjun Xu1、3、9、*
Author Affiliations
  • 1The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • 2Institute of Optoelectronic Engineering, College of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • 3Synergetic Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
  • 4Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028, Ukraine
  • 5Faculty of Mathematics and Physics, University of Ljubljana and Department of Complex Matter, J. Stefan Institute, Ljubljana, Slovenia
  • 6Faculty of Physics, Vienna University, Boltzmanngasse 5, A-1090 Wien, Austria
  • 7e-mail: zxz@nankai.edu.cn
  • 8e-mail: lgtc@iop.kiev.ua
  • 9e-mail: jjxu@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.388706 Cite this Article Set citation alerts
    Shaohua Gao, Jiayi Wang, Wenhua Li, Xuanyi Yu, Xinzheng Zhang, Xiao Song, Andrey Iljin, Irena Drevensek-Olenik, Romano A. Rupp, Jingjun Xu. Low threshold random lasing in dye-doped and strongly disordered chiral liquid crystals[J]. Photonics Research, 2020, 8(5): 642 Copy Citation Text show less
    References

    [1] V. S. Letokhov. Generation of light by a scattering medium with negative resonance absorption. J. Exp. Theor. Phys., 26, 835-840(1968).

    [2] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain. Laser action in strongly scattering media. Nature, 368, 436-438(1994).

    [3] W. L. Sha, C. H. Liu, R. R. Alfano. Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media. Opt. Lett., 19, 1922-1924(1994).

    [4] M. A. Noginov, H. J. Caulfield, N. E. Noginova, P. Venkateswarlu. Line narrowing in the dye solution with scattering centers. Opt. Commun., 118, 430-437(1995).

    [5] G. Van Soest, M. Tomita, A. Lagendijk. Amplifying volume in scattering media. Opt. Lett., 24, 306-308(1999).

    [6] G. van Soest, F. J. Poelwijk, R. Sprik, A. Lagendijk. Dynamics of a random laser above threshold. Phys. Rev. Lett., 86, 1522-1525(2001).

    [7] D. S. Wiersma, A. Lagendijk. Light diffusion with gain and random lasers. Phys. Rev. E, 54, 4256-4265(1996).

    [8] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang. Random laser action in semiconductor powder. Phys. Rev. Lett., 82, 2278-2281(1999).

    [9] H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, R. P. Chang. Spatial confinement of laser light in active random media. Phys. Rev. Lett., 84, 5584-5587(2000).

    [10] H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, R. P. Chang. Random lasers with coherent feedback. IEEE J. Sel. Top. Quantum Electron., 9, 111-119(2003).

    [11] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, G. C. Yi. Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl. Phys. Lett., 84, 3241-3243(2004).

    [12] S. Mujumdar, M. Ricci, R. Torre, D. S. Wiersma. Amplified extended modes in random lasers. Phys. Rev. Lett., 93, 053903(2004).

    [13] L. Sznitko, J. Mysliwiec, A. Miniewicz. The role of polymers in random lasing. J. Polym. Sci. Part B: Polym. Phys., 53, 951-974(2015).

    [14] G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino. Random lasing and weak localization of light in dye-doped nematic liquid crystals. Opt. Express, 14, 7737-7744(2006).

    [15] A. K. Tiwari, S. Mujumdar. Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice. Phys. Rev. Lett., 111, 233903(2013).

    [16] J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden. The photonic band edge laser: a new approach to gain enhancement. J. Appl. Phys., 75, 1896-1899(1994).

    [17] V. I. Kopp, Z. Q. Zhang, A. Z. Genack. Lasing in chiral photonic structures. Prog. Quantum Electron., 27, 369-416(2003).

    [18] S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko. Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Appl. Phys. Lett., 82, 16-18(2003).

    [19] P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, A. Bobrovsky. Light controllable tuning and switching of lasing in chiral liquid crystals. Opt. Express, 13, 2358-2363(2005).

    [20] S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles. Enhanced emission from liquid-crystal lasers. J. Appl. Phys., 97, 023103(2005).

    [21] H. Finkelmann. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater., 13, 1069-1072(2010).

    [22] Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, S. T. Wu. Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser. Opt. Commun., 261, 91-96(2006).

    [23] C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, J. Beeckman. Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals. Appl. Phys. Lett., 112, 043301(2018).

    [24] Y. Zhou, Y. Huang, A. Rapaport, M. Bass, S. T. Wu. Doubling the optical efficiency of a chiral liquid crystal laser using a reflector. Appl. Phys. Lett., 87, 231107(2005).

    [25] Y. Zhou, Y. Huang, S. T. Wu. Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector. Opt. Express, 14, 3906-3916(2006).

    [26] B. He, Q. Liao, Y. Huang. Random lasing in a dye doped cholesteric liquid crystal polymer solution. Opt. Mater., 31, 375-379(2008).

    [27] S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, H. J. Coles. Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals. Appl. Phys. Lett., 100, 071110(2012).

    [28] P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, H. J. Coles. Band-edge and random lasing in paintable liquid crystal emulsions. Appl. Phys. Lett., 98, 141102(2011).

    [29] L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, Y. Lu. Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals. Laser Phys. Lett., 15, 035002(2018).

    [30] L. Li, L. Deng. Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells. Laser Phys., 23, 085001(2013).

    [31] L. W. Li, L. G. Deng. Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells. Eur. Phys. J. B, 86, 112(2013).

    [32] H. Lu, J. Xing, C. Wei, J. Xia, J. Sha, Y. Ding, G. Zhang, K. Xie, L. Qiu, Z. Hu. Band-gap-tailored random laser. Photon. Res., 6, 390-395(2018).

    [33] P. G. de Gennes, J. Prost. The Physics of Liquid Crystals, 6(1993).

    [34] C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, T. H. Lin. Random lasing in blue phase liquid crystals. Opt. Express, 20, 23978-23984(2012).

    [35] T. Okamoto, R. Yoshitome. Random lasing in dye-doped polymer random media with a bubble structure. J. Opt. Soc. Am. B, 34, 1497-1502(2017).

    [36] V. A. Belyakov. Low threshold DFB lasing in chiral LC at diffraction of pumping wave. Mol. Cryst. Liq. Cryst., 453, 43-69(2006).

    [37] Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, M. Ozaki. Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal. Appl. Phys. Lett., 90, 091114(2007).

    Shaohua Gao, Jiayi Wang, Wenhua Li, Xuanyi Yu, Xinzheng Zhang, Xiao Song, Andrey Iljin, Irena Drevensek-Olenik, Romano A. Rupp, Jingjun Xu. Low threshold random lasing in dye-doped and strongly disordered chiral liquid crystals[J]. Photonics Research, 2020, 8(5): 642
    Download Citation