• Laser & Optoelectronics Progress
  • Vol. 55, Issue 4, 042601 (2018)
Guanghui Ma, He Yu, Yuqian Liu, He Zhang, Liang Jin, and Yingtian Xu*
Author Affiliations
  • State Key Laboratory on High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP55.042601 Cite this Article Set citation alerts
    Guanghui Ma, He Yu, Yuqian Liu, He Zhang, Liang Jin, Yingtian Xu. Resonance Radiation Enhancement of Metal Nanometer Surface Plasmons[J]. Laser & Optoelectronics Progress, 2018, 55(4): 042601 Copy Citation Text show less
    (a) Localized surface plasmon oscillation; (b) spreading surface plasmon
    Fig. 1. (a) Localized surface plasmon oscillation; (b) spreading surface plasmon
    Fitted curves of dielectric constant of nanoparticles in Palik experiment. (a) Au nanoparticles; (b) Ag nanoparticles
    Fig. 2. Fitted curves of dielectric constant of nanoparticles in Palik experiment. (a) Au nanoparticles; (b) Ag nanoparticles
    Optical field distributions of (a) sphere, (b) cubic, (c) cylindrical and (d) pyramid prism-shaped Au nanoparticles
    Fig. 3. Optical field distributions of (a) sphere, (b) cubic, (c) cylindrical and (d) pyramid prism-shaped Au nanoparticles
    Purcell factors of single nanoparticles with different shapes. (a) Single Au nanoparticle; (b) single Ag nanoparticle
    Fig. 4. Purcell factors of single nanoparticles with different shapes. (a) Single Au nanoparticle; (b) single Ag nanoparticle
    Simulation model of single and bimetallic nanoparticles
    Fig. 5. Simulation model of single and bimetallic nanoparticles
    Resonance electric field distributions of metal nanoparticle. (a) Single Au nanoparticle; (b) double Au nanoparticles
    Fig. 6. Resonance electric field distributions of metal nanoparticle. (a) Single Au nanoparticle; (b) double Au nanoparticles
    Purcell factors corresponding to single and double metal nanoparticles with different length of long axis. (a) Single Au nanoparticle; (b) single Ag nanoparticle; (c) double Au nanoparticles; (d) double Ag nanoparticles
    Fig. 7. Purcell factors corresponding to single and double metal nanoparticles with different length of long axis. (a) Single Au nanoparticle; (b) single Ag nanoparticle; (c) double Au nanoparticles; (d) double Ag nanoparticles
    Purcell factors corresponding to single and double metal nanoparticles with different length of short axis. (a) Single Au nanoparticle; (b) single Ag nanoparticle; (c) double Au nanoparticles; (d) double Ag nanoparticles
    Fig. 8. Purcell factors corresponding to single and double metal nanoparticles with different length of short axis. (a) Single Au nanoparticle; (b) single Ag nanoparticle; (c) double Au nanoparticles; (d) double Ag nanoparticles
    Purcell factors corresponding to single and double metal nanoparticles at different refractive indices of environmental material. (a) Single Au nanoparticle; (b) single Ag nanoparticle; (c) double Au nanoparticles; (d) double Ag nanoparticles
    Fig. 9. Purcell factors corresponding to single and double metal nanoparticles at different refractive indices of environmental material. (a) Single Au nanoparticle; (b) single Ag nanoparticle; (c) double Au nanoparticles; (d) double Ag nanoparticles
    Purcell factors corresponding to single and double metal nanoparticles at different distances. (a) Single Au nanoparticle; (b) single Ag nanoparticle; (c) double Au nanoparticles; (d) double Ag nanoparticles
    Fig. 10. Purcell factors corresponding to single and double metal nanoparticles at different distances. (a) Single Au nanoparticle; (b) single Ag nanoparticle; (c) double Au nanoparticles; (d) double Ag nanoparticles
    Simulation model of bimetallic nanometer ellipsoid shell
    Fig. 11. Simulation model of bimetallic nanometer ellipsoid shell
    Effect of filling material of bimetallic nanometer ellipsoidal shell on Purcell factor. (a) Double Au nanometer ellipsoid shell; (b) double Ag nanometer ellipsoid shell
    Fig. 12. Effect of filling material of bimetallic nanometer ellipsoidal shell on Purcell factor. (a) Double Au nanometer ellipsoid shell; (b) double Ag nanometer ellipsoid shell
    Effect of ellipsoidal shell thickness on Purcell factor of double metal nanometer ellipsoidal shell. (a) Double Au nanometer ellipsoid shell; (b) double Ag nanometer ellipsoid shell
    Fig. 13. Effect of ellipsoidal shell thickness on Purcell factor of double metal nanometer ellipsoidal shell. (a) Double Au nanometer ellipsoid shell; (b) double Ag nanometer ellipsoid shell
    Guanghui Ma, He Yu, Yuqian Liu, He Zhang, Liang Jin, Yingtian Xu. Resonance Radiation Enhancement of Metal Nanometer Surface Plasmons[J]. Laser & Optoelectronics Progress, 2018, 55(4): 042601
    Download Citation