• Acta Optica Sinica
  • Vol. 42, Issue 22, 2230002 (2022)
Hailong Zhao1, Shu Gan1、2、*, Xiping Yuan2、3, Lin Hu1, Shuai Liu1, and Junjie Wang1
Author Affiliations
  • 1Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan , China
  • 2Yunnan Institute of Engineering Research and Application of Plateau Mountain Spatial Information Surveying and Mapping Technology, Kunming 650093, Yunnan , China
  • 3West Yunnan University of Applied Sciences, Dali671000, Yunnan , China
  • show less
    DOI: 10.3788/AOS202242.2230002 Cite this Article Set citation alerts
    Hailong Zhao, Shu Gan, Xiping Yuan, Lin Hu, Shuai Liu, Junjie Wang. Inversion of Soil Iron Oxide Based on Multi-Scale Continuous Wavelet Decomposition[J]. Acta Optica Sinica, 2022, 42(22): 2230002 Copy Citation Text show less
    References

    [1] Fu J L. Modeling island soil elements with visible near infrared reflectance spectroscopy in Pingtan[D](2016).

    [2] Hu L, Gan S, Yuan X P et al. Spatial differentiation analysis of water quality in Dianchi Lake based on GF-5 NDVI characteristic optimization[J]. Journal of Spectroscopy, 2021, 5542126(2021).

    [3] Wei L F, Pu H C, Wang Z X et al. Estimation of soil arsenic content with hyperspectral remote sensing[J]. Sensors, 20, 4056(2020).

    [4] Zhang Q X, Zhang H B, Liu W K et al. Inversion of heavy metals content with hyperspectral reflectance in soil of well-facilitied capital farmland construction areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 33, 230-239(2017).

    [5] Zhao L, Hu Y M, Zhou W et al. Estimation methods for soil mercury content using hyperspectral remote sensing[J]. Sustainability, 10, 2474(2018).

    [6] Shi Z[M]. Soil ground hyperspectral remote sensing principles and methods(2014).

    [7] He T, Wang J, Cheng Y et al. Study on spectral features of soil Fe2O3[J]. Geography and Geo-Information Science, 22, 30-34(2006).

    [8] Tan J, Chen Y, Zhou W J et al. Inversion of iron oxide contents in forest soils of Dawei Mountains using laboratory hyperspectral data[J]. Soils, 53, 858-864(2021).

    [9] Tan Y, Jiang Q G, Liu H X et al. Estimation of organic matter, moisture, total iron and pH from back soil based on multi scales SNV-CWT transformation[J]. Spectroscopy and Spectral Analysis, 41, 3424-3430(2021).

    [10] Guo Y, Guo Z X, Liu J et al. Hyperspectral inversion of paddy soil iron oxide in typical subtropical area with Pearl River Delta, China as illustration[J]. Chinese Journal of Applied Ecology, 28, 3675-3683(2017).

    [11] Yu L, Hong Y S, Zhou Y et al. Inversion of soil organic matter content using hyperspectral data based on continuous wavelet transformation[J]. Spectroscopy and Spectral Analysis, 36, 1428-1433(2016).

    [12] Ding H N, Chen Y, Chen Y Z. Remote sensing inversion method of soil iron content in the Loess Plateau[J]. Remote Sensing Technology and Application, 34, 275-283(2019).

    [13] Li S Q, Ma Y F, Liu X et al. Hyperspectral inversion of macro element content in loess based on the profile of Zaoshugou Village, Mangshan Mountain, Zhengzhou City[J]. Remote Sensing for Natural Resources, 33, 121-129(2021).

    [14] Yang Y, Huang W H, Lu Y et al. Spectral characteristics and quantitative retrieval of free iron content in soil[J]. Journal of South China Agricultural University, 41, 91-99(2020).

    [15] Li G W, Gao X H, Xiao N W et al. Estimation of soil organic matter content based on characteristic variable selection and regression methods[J]. Acta Optica Sinica, 39, 0930002(2019).

    [16] Yuan Z J. Study on the characteristics of the geoheritages and protection in Lufeng dinosaur national geopark, Yunnan[D](2015).

    [17] Zhang Y, Ding J L, Zhang Z P et al. Effect of spectral configuration on soil organic matter and electrical conductivity predicted by optimal band combination algorithm[J]. Laser & Optoelectronics Progress, 58, 2128001(2021).

    [18] Zhao A X, Tang X J, Zhang Z H et al. Optimizing Savitzky-Golay parameters and its smoothing pretreatment for FTIR gas spectra[J]. Spectroscopy and Spectral Analysis, 36, 1340-1344(2016).

    [19] Zhang S W, Shen Q, Nie C J et al. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 393-400(2019).

    [20] Peng Y S, Chen S S, Chen J Y et al. Estimation model of chlorophyll-a concentration based on continuous wavelet coefficient[J]. Laser & Optoelectronics Progress, 58, 0828002(2021).

    [21] Li J B, Guo Z M, Huang W Q et al. Near-infrared spectra combining with CARS and SPA algorithms to screen the variables and samples for quantitatively determining the soluble solids content in strawberry[J]. Spectroscopy and Spectral Analysis, 35, 372-378(2015).

    [22] Bellon-Maurel V, Fernandez-Ahumada E, Palagos B et al. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy[J]. TrAC Trends in Analytical Chemistry, 29, 1073-1081(2010).

    [23] Tang H T, Meng X T, Su X X et al. Hyperspectral prediction on soil organic matter of different types using CARS algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 37, 105-113(2021).

    Hailong Zhao, Shu Gan, Xiping Yuan, Lin Hu, Shuai Liu, Junjie Wang. Inversion of Soil Iron Oxide Based on Multi-Scale Continuous Wavelet Decomposition[J]. Acta Optica Sinica, 2022, 42(22): 2230002
    Download Citation