• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 1, 45 (2009)
CHIU-MEI HSUEH1, WEN LO1, SUNG-JAN LIN2,3, TSUNG-JEN WANG4..., FUNG-RUNG HU5, HSIN-YUAN TAN6,7 and CHEN-YUAN DONG1,*|Show fewer author(s)
Author Affiliations
  • 1Department of Physics National Taiwan University Taipei 106, Taiwan, China
  • 2Institute of Biomedical Engineering National Taiwan University Taipei 106, Taiwan, China
  • 3Department of Dermatology National Taiwan University Hospital Taipei 100, Taiwan, China
  • 4Department of Ophthalmology Taipei Medical University Hospital Taipei 100, Taiwan, China
  • 5Department of Ophthalmology National Taiwan University, College of Medicine and Hospital Taipei 100, Taiwan, China
  • 6Department of Ophthalmology Chang-Gung University Linko 333, Taiwan
  • 7Institute of Biomedical Engineering National Taiwan University Taipei 100, Taiwan, China
  • show less
    DOI: Cite this Article
    CHIU-MEI HSUEH, WEN LO, SUNG-JAN LIN, TSUNG-JEN WANG, FUNG-RUNG HU, HSIN-YUAN TAN, CHEN-YUAN DONG. MULTIPHOTON MICROSCOPY: A NEW APPROACHIN PHYSIOLOGICAL STUDIES AND PATHOLOGICAL DIAGNOSIS FOR OPHTHALMOLOGY[J]. Journal of Innovative Optical Health Sciences, 2009, 2(1): 45 Copy Citation Text show less
    References

    [1] Crown, L. A., “Introduction to slit lamp biomicroscopy,” Am. J. Clin. Med. 3, 12 (2006).

    [2] Gullstrand, A., “Demonstration der Nernstspaltlampe,” Presentacion al congreso de la Sociedad Alemana de Oftalmologia. Heidelberg (1911).

    [3] Martin, C. L., “Slit lamp examination of the normal Canine anterior ocular segment: Part I-Introduction and Technique*,” J. Small Ani. Pract. 10, 143–149 (1969).

    [4] Mishima, S., Gasset, A., Klyce, S. D. and Baum, J. L., “Determination of tear volume and tear flow,” Invest. Ophth. Vis. Sci. 5, 264–276 (1966).

    [5] Waltman, S. R. and Kaufman, H. E., “A new objective slit lamp fluorophotometer,” Invest. Ophth. Vis. Sci. 9, 247–249 (1970).

    [6] Hirano, K., Ito, Y., Suzuki, T., Kojima, T., Kachi, S. and Miyake, Y., “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20, 281 (2001).

    [7] Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K. and Puliafito, C. A., “Optical coherence tomography,” Science 254, 1178–1181 (1991).

    [8] Fukuchi, T., Takahashi, K., Shou, K. and Matsumura, M., “Optical coherence tomographic (OCT) findings on normal retina and laser induced choroidal neovascularisation (CNV) in rat,” Invest. Ophth. Vis. Sci. 41, S174–S174 (March 15, 2000).

    [9] Fujimoto, J. G., “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (November 2003).

    [10] Brezinski, M. E. and Fujimoto, J. G., “Optical coherence tomography: high-resolution imaging innontransparent tissue,” Sel. Top. Quantum Electron. IEEE J. 5, 1185–1192 (1999).

    [11] Swanson, E. A., Izatt, J. A., Hee, M. R., Huang, D., Lin, C. P., Schuman, J. S., Puliafito, C. A. and Fujimoto, J. G., “In vivo retinal imaging by optical coherence tomography,” Opt. Let. 18, 1993–1911 (1993).

    [12] Izatt, J. A., Hee, M. R., Swanson, E. A., Lin, C. P., Huang, D., Schuman, J. S., Puliafito, C. A. and Fujimoto, J. G., “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

    [13] Hoerauf, H., Wirbelauer, C., Scholz, C., Engelhardt, R., Koch, P., Laqua, H. and Birngruber, R., “Slitlamp- adapted optical coherence tomography of the anterior segment,” Graef. Arch. Clinic. Exp. Ophthalmol. 238, 8–18 (2000).

    [14] Wang, J., Simpson, T. L. and Fonn, D., “Objective measurements of corneal light-backscatter during corneal swelling, by optical coherence tomography,” Invest. Ophth. Vis. Sci. 45, 3493 (2004).

    [15] Puliafito, C. A., Hee, M. R., Lin, C. P., Reichel, E. J., Schuman, S. J., Duker, S., Izatt, J. A., Swanson, E. A. and Fujimoto, J. G., “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–29 (1995).

    [16] Minsky, M., “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (July– August 1988).

    [17] Petran, M., Hadravsky, M., Egger, M. D. and Galambos, R., “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 90–93 (1968).

    [18] Egger, M. D., “Observation of nerve fibers in incident light,” Experientia (Basel) 25, 1225 (1969).

    [19] Bohnke, M. and Masters, B. R., “Confocal microscopy of the cornea,” Prog. Retin. Eye Res. 18, 553–628 (1999).

    [20] Masters B. R. and Bohnke, M., “Three-dimensional confocal microscopy of the human cornea in vivo,” Ophthal. Res. 33, 125–135 (May–June 2001).

    [21] Masters B. R. and Bohnke, M., “Three-dimensional confocal microscopy of the living human eye,” Annu. Rev. Biomed. Eng. 4, 69–91 (2002).

    [22] Chen, W. L., Chang, H. W. and Hu, F. R., “In vivo confocal microscopic evaluation of corneal wound healing after epi-LASIK,” Invest. Ophth. Vis. Sci. 49, 2416–2423 (June 2008).

    [23] Moller-Pedersen, T., Cavanagh, H. D., Petroll, W. M. and Jester, J. V., “Mechanisms of regression and haze development after excimer laser PRK — A one-year confocal microscopic study,” Invest. Ophth. Vis. Sci. 40, S108–S108 (March 15, 1999).

    [24] Moller-Pedersen, T., Cavanagh, H. D., Petroll, W. M. and Jester, J. V., “Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy — A one-year confocal microscopic study,” Ophthalmology 107, 1235–1245 (July 2000).

    [25] Moller-Pedersen, T. H., Li, F., Petroll, W. M., Cavanagh, H. D. and Jester, J. V., “Confocal microscopic characterization of wound repair after photorefractive keratectomy,” Invest. Ophth. Vis. Sci. 39, 487–501 (March 1998).

    [26] Chen, W. L., Sun, Y., Lo, W., Tan, H. Y. and Dong, C. Y., “Combination of multiphoton and reflective confocal imaging of cornea,” Microsc. Res. Tech. 71, 83–85 (February 2008).

    [27] Hollingsworth, J. G., Bonshek, R. E. and Efron, N., “Correlation of the appearance of the keratoconic cornea in vivo by confocal microscopy and in vitro by light microscopy,” Cornea 24, 397–405 (May 2005).

    [28] Linna, T. and Tervo, T., “Real-time confocal microscopic observations on human corneal nerves and wound healing after excimer laser photorefractive keratectomy,” Curr. Eye Res. 16, 640–649 (July 1997).

    [29] MollerPedersen, T., Vogel, M., Li, H. F., Petroll, W. M., Cavanagh, H. D. and Jester, J. V., “Quantification of stromal thinning, epithelial thickness, and corneal haze after photorefractive keratectomy using in vivo confocal microscopy,” Ophthalmology 104, 360–368 (March 1997).

    [30] Jalbert, I., Stapleton, F., Papas, E., Sweeney, D. F. and Coroneo, M., “In vivo confocal microscopy of the human cornea,” Brit. Med. J. 87, 225–236 (2003).

    [31] Patel, S. V., McLaren, J. W., Hodge, D. O. and Bourne, W. M., “Normal human keratocyte density and corneal thickness measurement by using confocal microscopy In Vivo,” Invest. Ophth. Vis. Sci. 42, 333–339 (2001).

    [32] Hollingsworth, J. G., Bonshek, R. E. and Efron, N., “Correlation of the appearance of the Keratoconic cornea In Vivo by confocal microscopy and in vitro by light microscopy,” Cornea 24, 397 (2005).

    [33] Cavanagh, H. D., Petroll, W. M., Alizadeh, H., He, Y. U. G., McCulley, J. P. and Jester, J. V., “Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease,” Ophthalmology (Rochester, MN) 100, 1444–1454 (1993).

    [34] Beuerman, R. W., Chew, S. J., Pedroza, L., Assouline, M., Barron, B., Hill, J. and Kaufman, H. E., “Early diagnosis of infectious Keratitis with In vivo real-time confocal microscopy,” Invest. Ophth. Vis. Sci. 33, 1234–1234, (March 15 1992).

    [35] Pfister, D. R., Cameron, J. D., Krachmer, J. H. and Holland, E. J., “Confocal microscopy findings of Acanthamoeba keratitis,” Am. J. Ophth. 121, 119– 128 (February 1996).

    [36] Nakano, E., Oliveira, M., Portellinha, W., de Freitas, D. and Nakano, K., “Confocal microscopy in early diagnosis of Acanthamoeba keratitis,” J. Refract. Surg. 20, S737–S740 (September–October 2004).

    [37] Balestrazzi, A., Martone, G., Traversi, C., Haka, G., Toti, P. and Caporossi, A., “Keratoconus associated with corneal macular dystrophy: In vivo confocal microscopic evaluation,” Euro. J. Ophthalmol. 16, 745–750 (September–October 2006).

    [38] Mazzotta, C., Baiocchi, S., Caporossi, O., Buccoliero, D., Casprini, F., Caporossi, A. and Balestrazzi, A., “Confocal microscopy identification of keratoconus associated with posterior polymorphous corneal dystrophy,” J. Cataract Refr. Surg. 34, 318– 321 (February 2008).

    [39] Denk, W., Strickler, J. H. and Webb, W. W., “2- Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (April 6 1990).

    [40] So, P. T. C., Dong, C. Y., Masters, B. R. and Berland, K. M., “Two-P hoton excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2, 399–429 (2000).

    [41] Chen, W. L., Lo, W., Sun, Y., Lin, S. J., Tan, H. Y. and Dong, C. Y., “The combination of multiphoton and reflected confocal microscopy for cornea imaging,” Proc. SPIE 6138, 61380M (2006).

    [42] Masters, B. R., Piston, D. W. and Webb, W. W., “3-dimensional Nad(P)H redox imaging of the insitu cornea with 2 photon excitation laser scanning microscopy,” Invest. Ophth. Vis. Sci. 34, 1402–1402 (March 15 1993).

    [43] Piston, D. W., Masters, B. R. and Webb, W. W., “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178, 20–27 (1995).

    [44] Zipfel, W. R., Williams, R. M. and Webb, W. W., “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1368–1376 (November 2003).

    [45] Campagnola, P. J. and Loew, L. M., “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).

    [46] Goppert-Mayer, M., “Elementary file with two quantum fissures,” Ann. Phys. 9, 273–294 (May 1931).

    [47] Kaiser, W. and Garrett, C. G. B., “2-photon excitation in Caf2 — Eu2+,” Phys. Rev. Lett. 7, 229 (1961).

    [48] Franken, P. A., Hill, A. E., Peters, C. W. and Weinreich, G., “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).

    [49] Gannaway, J. N., “Second-harmonic imaging in the scanning optical microscope,” Opt. Quant. Electron. 10, 435 (1978).

    [50] Helmchen, F., “Deep tissue two-photonmicroscopy,” Nat. Methods 2, 932 (2005).

    [51] Zipfel, W. R., Williams, R. M. and Webb, W. W., “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).

    [52] Sun, C. K., Chu, S.W., Chen, S. Y., Tsai, T. H., Liu, T. M., Lin, C. Y. and Tsai, H. J. “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).

    [53] Forrester, J. V., The Eye: Basic Sciences in Practice, 2nd Ed. (W. B. Saunders, Edinburgh; New York, 2002).

    [54] Fine, S., “Optical second harmonic generation in biological systems,” Scanning 340, 360 (1971).

    [55] Mertz, J. andMoreaux, L., “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Communi. 196, 325–330 (2001).

    [56] Lyubovitsky, J. G., Spencer, J. A., Krasieva, T. B., Andersen, B. and Tromberg, B.J., “Imaging corneal pathology in a transgenic mouse model using nonlinear microscopy,” J. Biomed. Opt. 11, 014013 (2006).

    [57] Yeh, A. T., Nassif, N., Zoumi, A. and Tromberg, B. J., “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).

    [58] Morishige, N., Wahlert, A. J., Kenney, M. C., Brown, D. J., Kawamoto, K., Chikama, T., Nishida, T. and Jester, J. V., “Second-harmonic imaging microscopy of normal human and Keratoconus cornea,” Invest. Ophth. Vis. Sci. 48, 1087–1094 (2007).

    [59] Han, M., Giese, G. and Bille, J. F., “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13, 5791–5797 (July 25, 2005).

    [60] Teng, S. W., Tan, H. Y., Peng, J. L., Lin, H. H., Kim, K. H., Lo, W., Sun, Y., Lin, W. C., Lin, S. J. and Jee, S. H., “Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo Porcine eye,” Invest. Ophth. Vis. Sci. 47, 1216–1224 (2006).

    [61] Lo, W. S., Teng, W. H., Tan, Y., Kim, K. H., Chen, H. C., Lee, H. S., Chen, Y. F., So, P. T. C. and Dong, C. Y., “Intact corneal stroma visualization of GFP mouse revealed by multiphoton imaging,” Microsc. Res. Tech 69, 973–975 (2006).

    [62] Ragan, T., Sylvan, J. D., Kim, K., Huang, H. H., Bahlmann, K., Lee, R. T. and So, P. T. C., “Highresolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 014015 (2007).

    [63] Rabinowitz, Y. S., “Keratoconus,” Surv. Ophth. 42, 297–319 (January–February 1998).

    [64] Tan, H. Y., Sun, Y., Lo, W., Lin, S. J., Hsiao, C. H., Chen, Y. F.,. Huang, S. C. M, Lin, W. C., Jee, S. H. and Yu, H. S., “Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in Keratoconus ex vivo,” Invest. Ophth. Vis. Sci. 47, 5251–5259 (2006).

    [65] Radford, C. F., Minassian, D. C. and Dart, J. K. G., “Acanthamoeba keratitis in England and Wales: incidence, outcome, and risk factors,” Brit. Med. J. 86, 536–542 (2002).

    [66] Bacon, A. S., Frazer, D. G., Dart, J. K., Matheson, M., Ficker, L. A. and Wright, P., “A review of 72 consecutive cases of Acanthamoeba keratitis, 1984– 1992,” Eye 7, 719–25 (1993).

    [67] Tan, H. Y., Sun, Y., Lo, W., Teng, S. W., Wu, R. J., Jee, S. H., Lin, W. C., Hsiao, C. H., Lin, H. C. and Chen, Y. F., “Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis,” J. Biomed. Opt. 12, 024013 (2007).

    [68] Teng, S. W., Tan, H. Y., Sun, Y., Lin, S. J., Lo, W., Hsueh, C. M., Hsiao,C. H., Lin, W. C., Huang, S. C. M. and Dong, C. Y., “Multiphoton fluorescence and second-harmonic-generation microscopy for imaging structural lterations in corneal scar tissue in penetrating full-thickness wound,” Arch. Ophth. 125, 977 (2007).

    [69] Haw W. W. and Manche, E. E., “Conductive keratoplasty and laser thermal keratoplasty,” Int. Ophthalmol. Clin. 42, 99–106 (Fall 2002).

    [70] Huang, B., “Update on nonexcimer laser refractive surgery technique: conductive keratoplasty,” Curr. Opin. Ophthalmol. 14, 203–206 (August 2003).

    [71] McDonald, M. B., Durrie, D., Asbell, P., Maloney, R. and Nichamin, L., “Treatment of presbyopia with conductive keratoplasty (R) — six-month results of the 1-year United States FDA clinical trial,” Cornea 23, 661–668 (October 2004).

    [72] McDonald, M. B., Hersh, P. S., Manche, E. E., Maloney, R. K., Davidorf, J. and Sabry, M., “Conductive keratoplasty for the correction of low to moderate hyperopia: US clinical trial 1-year results on 355 eyes,” Ophthalmology 109, 1978–1989 (November 2002).

    [73] Wang, T. J., Lo, W., Hsueh, C. M., Hsieh, M. S., Dong, C. Y. and Hu, F. R., “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13, 034019 (May–Jun 2008).

    [74] Tan, H. Y., Teng, S. W., Lo, W., Lin, W. C., Lin, S. J., Jee, S. H. and Dong, C. Y., “Characterizing the thermally induced structural changes to intact porcine eye, Part 1: second harmonic generation imaging of cornea stroma,” J. Biomed. Opt. 10, 054019 (2005).

    [75] Kampmeier, J., Radt, B., Birngruber, R. and Brinkmann, R., “Thermal and biomechanical parameters of porcine cornea,” Cornea 19, 355 (2000).

    CHIU-MEI HSUEH, WEN LO, SUNG-JAN LIN, TSUNG-JEN WANG, FUNG-RUNG HU, HSIN-YUAN TAN, CHEN-YUAN DONG. MULTIPHOTON MICROSCOPY: A NEW APPROACHIN PHYSIOLOGICAL STUDIES AND PATHOLOGICAL DIAGNOSIS FOR OPHTHALMOLOGY[J]. Journal of Innovative Optical Health Sciences, 2009, 2(1): 45
    Download Citation