• Photonics Research
  • Vol. 11, Issue 11, 1820 (2023)
Jong-Moo Lee1,*, Alessio Baldazzi2, Matteo Sanna2, Stefano Azzini2..., Joon Tae Ahn1, Myung-Lae Lee1, Youngik Sohn3 and Lorenzo Pavesi2|Show fewer author(s)
Author Affiliations
  • 1Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
  • 2Department of Physics, University of Trento, 38123 Trento, Italy
  • 3Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
  • show less
    DOI: 10.1364/PRJ.489869 Cite this Article Set citation alerts
    Jong-Moo Lee, Alessio Baldazzi, Matteo Sanna, Stefano Azzini, Joon Tae Ahn, Myung-Lae Lee, Youngik Sohn, Lorenzo Pavesi, "Do different kinds of photon-pair sources have the same indistinguishability in quantum silicon photonics?," Photonics Res. 11, 1820 (2023) Copy Citation Text show less
    References

    [1] B. Shaw, M. M. Wilde, O. Oreshkov, I. Kremsky, D. A. Lidar. Encoding one logical qubit into six physical qubits. Phys. Rev. A, 78, 012337(2008).

    [2] L. Viola, E. Knill, R. Laflamme. Constructing qubits in physical systems. J. Phys. A, 34, 7067-7079(2001).

    [3] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, R. J. Schoelkopf. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun., 8, 94(2017).

    [4] D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, L. DiCarlo. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun., 6, 6983(2015).

    [5] E. Kapit. Hardware-efficient and fully autonomous quantum error correction in superconducting circuits. Phys. Rev. Lett., 116, 150501(2016).

    [6] B. Da Lio, C. Faurby, X. Zhou, M. L. Chan, R. Uppu, H. Thyrrestrup, S. Scholz, A. D. Wieck, A. Ludwig, P. Lodahl, L. Midolo. A pure and indistinguishable single-photon source at telecommunication wavelength. Adv. Quantum Technol., 5, 2200006(2022).

    [7] N. Lal, S. Mishra, R. P. Singh. Indistinguishable photons. AVS Quantum Sci., 4, 021701(2022).

    [8] S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni. Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express, 20, 23100-23107(2012).

    [9] E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express, 21, 27826-27834(2013).

    [10] S. Signorini, L. Pavesi. On-chip heralded single photon sources. AVS Quantum Sci., 2, 041701(2020).

    [11] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21, 467-488(1982).

    [12] T. H. Johnson, S. R. Clark, D. Jaksch. What is a quantum simulator?. EPJ Quantum Technol., 1, 10(2014).

    [13] R. Raussendorf, H. J. Briegel. A one-way quantum computer. Phys. Rev. Lett., 86, 5188-5191(2001).

    [14] H. J. Briegel, D. Browne, W. Dür, M. Van den Nest. Measurement-based quantum computation. Nat. Phys., 5, 19-26(2009).

    [15] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson, M. Gimeno-Segovia, E. Johnston, K. Kieling, N. Nickerson, M. Pant, F. Pastawski, T. Rudolph, C. Sparrow. Fusion-based quantum computation. arXiv(2021).

    [16] H. Bombin, I. H. Kim, D. Litinski, N. Nickerson, M. Pant, F. Pastawski, S. Roberts, T. Rudolph. Interleaving: Modular architectures for fault-tolerant photonic quantum computing. arXiv(2021).

    [17] C. Vigliar, S. Paesani, Y. Ding, J. C. Adcock, J. Wang, S. Morley-Short, D. Bacco, L. K. Oxenløwe, M. G. Thompson, J. G. Rarity, A. Laing. Error-protected qubits in a silicon photonic chip. Nat. Phys., 17, 1137-1143(2021).

    [18] J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson. On-chip quantum interference between silicon photon-pair sources. Nat. Photonics, 8, 104-108(2014).

    [19] J.-M. Lee, W.-J. Lee, M.-S. Kim, J. J. Ju. Noise filtering for highly correlated photon pairs from silicon waveguides. J. Lightwave Technol., 37, 5428-5434(2019).

    [20] I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, M. G. Thompson. On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. Opt. Express, 26, 20379-20395(2018).

    [21] D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani, D. Bacco, R. Santagati, Y.-J. Qian, Y. Li, Y.-F. Xiao, M. Huber, M. Malik, G. F. Sinclair, X. Zhou, K. Rottwitt, J. L. O'Brien, J. G. Rarity, Q. Gong, L. K. Oxenlowe, J. Wang, M. G. Thompson. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys., 16, 148-153(2020).

    [22] J.-M. Lee, W.-J. Lee, M.-S. Kim, S. Cho, J. J. Ju, G. Navickaite, J. Fernandez. Controlled-NOT operation of SiN-photonic circuit using photon pairs from silicon-photonic circuit. Opt. Commun., 509, 127863(2022).

    [23] C. K. Hong, Z. Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).

    [24] A. M. Brańczyk. Hong–Ou–Mandel interference. arXiv(2017).

    [25] F. Bouchard, A. Sit, Y. Zhang, R. Fickler, F. M. Miatto, Y. Yao, F. Sciarrino, E. Karimi. Two-photon interference: the Hong–Ou–Mandel effect. Rep. Prog. Phys., 84, 012402(2020).

    [26] J. He, B. A. Bell, A. Casas-Bedoya, Y. Zhang, A. S. Clark, C. Xiong, B. J. Eggleton. Ultracompact quantum splitter of degenerate photon pairs. Optica, 2, 779-782(2015).

    [27] N. Quesada, L. G. Helt, M. Menotti, M. Liscidini, J. E. Sipe. Beyond photon pairs—nonlinear quantum photonics in the high-gain regime: a tutorial. Adv. Opt. Photon., 14, 291-403(2022).

    [28] R. J. A. Francis-Jones, T. A. Wright, A. V. Gorbach, P. J. Mosley. Engineered photon-pair generation by four-wave mixing in asymmetric coupled waveguides. arXiv(2018).

    [29] O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, F. Parmigiani. Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering. APL Photonics, 4, 022902(2019).

    [30] M. Cordier, A. Orieux, B. Debord, F. Gérome, A. Gorse, M. Chafer, E. Diamanti, P. Delaye, F. Benabid, I. Zaquine. Active engineering of four-wave mixing spectral correlations in multiband hollow-core fibers. Opt. Express, 27, 9803-9814(2019).

    [31] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, S.-I. Itabashi. Four-wave mixing in silicon wire waveguides. Opt. Express, 13, 4629-4637(2005).

    [32] A. Melloni, F. Morichetti, M. Martinelli. Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides. J. Opt. Soc. Am. B, 25, C87-C97(2008).

    [33] S. M. M. Friis, J. G. Koefoed, K. Guo, K. Rottwitt. Analytic description of four-wave mixing in silicon-on-insulator waveguides. J. Opt. Soc. Am. B, 35, 702-710(2018).

    [34] S. Signorini, M. Sanna, S. Piccione, M. Ghulinyan, P. Tidemand-Lichtenberg, C. Pedersen, L. Pavesi. A silicon source of heralded single photons at 2 μm. APL Photonics, 6, 126103(2021).

    [35] B. L. S. Marlow. Degenerate four-wave-mixing as a low-power source of squeezed light. Opt. Express, 28, 38169-38183(2020).

    [36] D. L. Andrews, A. I. Lvovsky. Squeezed light. Photonics: Scientific Foundations, Technology and Applications, 121-163(2015).

    [37] B. Bagchi, R. Ghosh, A. Khare. A pedestrian introduction to coherent and squeezed states. Int. J. Mod. Phys. A, 35, 2030011(2020).

    [38] L. G. Helt, M. Liscidini, J. E. Sipe. How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices. J. Opt. Soc. Am. B, 29, 2199-2212(2012).

    [39] J.-M. Lee, M.-S. Kim, J. T. Ahn, L. Adelmini, D. Fowler, C. Kopp, C. J. Oton, F. Testa. Demonstration and fabrication tolerance study of temperature-insensitive silicon-photonic MZI tunable by a metal heater. J. Lightwave Technol., 35, 4903-4909(2017).

    [40] S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express, 17, 16558-16570(2009).

    [41] C. Ma, S. Mookherjea. Prospects for photon-pair generation using silicon microring resonators with two photon absorption and free carrier absorption. OSA Contin., 3, 1138-1153(2020).

    [42] L. G. Helt, Z. Yang, M. Liscidini, J. E. Sipe. Spontaneous four-wave mixing in microring resonators. Opt. Lett., 35, 3006-3008(2010).

    [43] Z. Vernon, M. Menotti, C. C. Tison, J. A. Steidle, M. L. Fanto, P. M. Thomas, S. F. Preble, A. M. Smith, P. M. Alsing, M. Liscidini, J. E. Sipe. Truly unentangled photon pairs without spectral filtering. Opt. Lett., 42, 3638-3641(2017).

    [44] P. G. Kwiat, A. M. Steinberg, R. Y. Chiao. Observation of a “quantum eraser”: a revival of coherence in a two-photon interference experiment. Phys. Rev. A, 45, 7729-7739(1992).

    [45] C. J. Oton, C. Manganelli, F. Bontempi, M. Fournier, D. Fowler, C. Kopp. Silicon photonic waveguide metrology using Mach–Zehnder interferometers. Opt. Express, 24, 6265-6270(2016).

    [46] M. A. Popović, C. Manolatou, M. R. Watts. Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. Opt. Express, 14, 1208-1222(2006).

    [47] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photonics Rev., 6, 47-73(2012).

    [48] A. Prinzen, M. Waldow, H. Kurz. Fabrication tolerances of SOI based directional couplers and ring resonators. Opt. Express, 21, 17212-17220(2013).

    [49] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.-J. Love, A. Aspuru-Guzik, J. L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 5, 4213(2014).

    [50] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, M. G. Thompson. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285-291(2018).

    [51] S. Aaronson, A. Arkhipov. The computational complexity of linear optics. arXiv(2010).

    [52] D. J. Brod, E. F. Galvão, A. Crespi, R. Osellame, N. Spagnolo, F. Sciarrino. Photonic implementation of boson sampling: a review. Adv. Photonics, 1, 034001(2019).

    [53] G. Dufour, T. Brünner, A. Rodríguez, A. Buchleitner. Many-body interference in bosonic dynamics. New J. Phys., 22, 103006(2020).

    [54] M. Pont, R. Albiero, S. E. Thomas, N. Spagnolo, F. Ceccarelli, G. Corrielli, A. Brieussel, N. Somaschi, H. Huet, A. Harouri, A. Lematre, I. Sagnes, N. Belabas, F. Sciarrino, R. Osellame, P. Senellart, A. Crespi. Quantifying n-photon indistinguishability with a cyclic integrated interferometer. Phys. Rev. X, 12, 031033(2022).

    [55] C. Dittel, G. Dufour, M. Walschaers, G. Weihs, A. Buchleitner, R. Keil. Totally destructive many-particle interference. Phys. Rev. Lett., 120, 240404(2018).

    [56] J. Münzberg, C. Dittel, M. Lebugle, A. Buchleitner, A. Szameit, G. Weihs, R. Keil. Symmetry allows for distinguishability in totally destructive many-particle interference. PRX Quantum, 2, 020326(2021).

    [57] C. Dittel, G. Dufour, G. Weihs, A. Buchleitner. Wave-particle duality of many-body quantum states. Phys. Rev. X, 11, 031041(2021).

    [58] K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, P. G. Kwiat. Joint spectral characterization of photon-pair sources. J. Mod. Opt., 65, 1141-1160(2018).

    [59] K. Garay-Palmett, H. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, I. A. Walmsley. Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber. Opt. Express, 15, 14870-14886(2007).

    [60] J. B. Christensen, J. G. Koefoed, K. Rottwitt, C. J. McKinstrie. Engineering spectrally unentangled photon pairs from nonlinear microring resonators by pump manipulation. Opt. Lett., 43, 859-862(2018).

    [61] J. C. Adcock, J. Bao, Y. Chi, X. Chen, D. Bacco, Q. Gong, L. K. Oxenløwe, J. Wang, Y. Ding. Advances in silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron., 27, 6700224(2021).

    Jong-Moo Lee, Alessio Baldazzi, Matteo Sanna, Stefano Azzini, Joon Tae Ahn, Myung-Lae Lee, Youngik Sohn, Lorenzo Pavesi, "Do different kinds of photon-pair sources have the same indistinguishability in quantum silicon photonics?," Photonics Res. 11, 1820 (2023)
    Download Citation