[1] Diem M, Koschny T, Soukoulis C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime[J]. Physical Review B, 79, 033101(2009).
[2] Doiron C F, Naik G V. Non-Hermitian selective thermal emitters using metal-semiconductor hybrid resonators[J]. Advanced Materials, 31, e1904154(2019).
[3] Dyachenko P N, Molesky S, Petrov A Y et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions[J]. Nature Communications, 7, 11809(2016).
[4] Xu J, Mandal J, Raman A P. Broadband directional control of thermal emission[J]. Science, 372, 393-397(2021).
[5] Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation[J]. Applied Physics Letters, 83, 380-382(2003).
[6] Arpin K A, Losego M D, Cloud A N et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification[J]. Nature Communications, 4, 2630(2013).
[7] Rinnerbauer V, Lenert A, Bierman D M et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics[J]. Advanced Energy Materials, 4, 1400334(2014).
[8] Liu X X, Li Z W, Wen Z J et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter[J]. Nanoscale, 11, 19742-19750(2019).
[9] Liu L X, Zhang X Q, Kenney M et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 26, 5031-5036(2014).
[10] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).
[11] Wang Q, Xiao M, Liu H et al. Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal[J]. Physical Review B, 93, 041415(2016).
[12] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[13] Gao L H, Cheng Q, Yang J et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 4, e324(2015).
[14] Xiao S Y, Zhong F, Liu H et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nature Communications, 6, 8360(2015).
[15] Maguid E, Yulevich I, Veksler D et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 352, 1202-1206(2016).
[16] Qiao T, Hu M Y, Jiang X et al. Generation and tunability of supermodes in Tamm plasmon topological superlattices[J]. ACS Photonics, 8, 2095-2102(2021).
[17] Liu H, Cao J X, Zhu S N et al. Lagrange model for the chiral optical properties of stereometamaterials[J]. Physical Review B, 81, 241403(2010).
[18] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).
[19] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014).
[20] Chen K, Feng Y J, Monticone F et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 29, 1606422(2017).
[21] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).
[22] Neubrech F, Huck C, Weber K et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 117, 5110-5145(2017).
[23] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).
[24] Zhu Z H, Liu H, Wang S M et al. Optically pumped nanolaser based on two magnetic plasmon resonance modes[J]. Applied Physics Letters, 94, 103106(2009).
[25] Hao J M, Wang J, Liu X L et al. High performance optical absorber based on a plasmonic metamaterial[J]. Applied Physics Letters, 96, 251104(2010).
[26] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).
[27] Liu H, Ng J, Wang S B et al. Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities[J]. Physical Review Letters, 106, 087401(2011).
[28] Liu H, Li G X, Li K F et al. Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials[J]. Physical Review B, 84, 235437(2011).
[29] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[30] Chen H T. Interference theory of metamaterial perfect absorbers[J]. Optics Express, 20, 7165-7172(2012).
[31] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 6, 7998-8006(2012).
[32] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 14, 3510-3514(2014).
[33] Wang C M, Chang Y C, Tsai M W et al. Reflection and emission properties of an infrared emitter[J]. Optics Express, 15, 14673-14678(2007).
[34] Park S J, Kim Y B, Moon Y J et al. Tuning of polarized room-temperature thermal radiation based on nanogap plasmon resonance[J]. Optics Express, 28, 15472-15481(2020).
[35] Ikeda K, Miyazaki H T, Kasaya T et al. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities[J]. Applied Physics Letters, 92, 021117(2008).
[36] Liu Z, Shimizu M, Yugami H. Emission bandwidth control on a two-dimensional superlattice microcavity array[J]. Optics Express, 30, 13839-13846(2022).
[37] Zhu L X, Sandhu S, Otey C et al. Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes[J]. Applied Physics Letters, 102, 103104(2013).
[38] Woolf D, Hensley J, Cederberg J G et al. Heterogeneous metasurface for high temperature selective emission[J]. Applied Physics Letters, 105, 081110(2014).
[39] Asano T, Suemitsu M, Hashimoto K et al. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor[J]. Science Advances, 2, e1600499(2016).
[40] Howes A, Nolen J R, Caldwell J D et al. Near-unity and narrowband thermal emissivity in balanced dielectric metasurfaces[J]. Advanced Optical Materials, 8, 1901470(2020).
[41] Li J Y, Yu B W, Shen S. Scale law of far-field thermal radiation from plasmonic metasurfaces[J]. Physical Review Letters, 124, 137401(2020).
[42] Kudyshev Z A, Kildishev A V, Shalaev V M et al. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization[J]. Applied Physics Reviews, 7, 021407(2020).
[43] Makhsiyan M, Bouchon P, Jaeck J et al. Shaping the spatial and spectral emissivity at the diffraction limit[J]. Applied Physics Letters, 107, 251103(2015).
[44] Streyer W, Feng K, Zhong Y et al. Selective absorbers and thermal emitters for far-infrared wavelengths[J]. Applied Physics Letters, 107, 081105(2015).
[45] Matsuno Y, Sakurai A. Perfect infrared absorber and emitter based on a large-area metasurface[J]. Optical Materials Express, 7, 618-626(2017).
[46] Lochbaum A, Fedoryshyn Y, Dorodnyy A et al. On-chip narrowband thermal emitter for mid-IR optical gas sensing[J]. ACS Photonics, 4, 1371-1380(2017).
[47] Liu X L, Tyler T, Starr T et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 107, 045901(2011).
[48] de Zoysa M, Asano T, Mochizuki K et al. Conversion of broadband to narrowband thermal emission through energy recycling[J]. Nature Photonics, 6, 535-539(2012).
[49] Argyropoulos C, Le K Q, Mattiucci N et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces[J]. Physical Review B, 87, 205112(2013).
[50] Hossain M M, Jia B H, Gu M. A metamaterial emitter for highly efficient radiative cooling[J]. Advanced Optical Materials, 3, 1047-1051(2015).
[51] Kong A R, Cai B Y, Shi P et al. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling[J]. Optics Express, 27, 30102-30115(2019).
[52] Liu G Q, Liu X S, Chen J et al. Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters[J]. Solar Energy Materials and Solar Cells, 190, 20-29(2019).
[53] Zou C J, Ren G H, Hossain M M et al. Metal-loaded dielectric resonator metasurfaces for radiative cooling[J]. Advanced Optical Materials, 5, 1700460(2017).
[54] Song J, Seo J, Han J et al. Ultrahigh emissivity of grating-patterned PDMS film from 8 to 13 μm wavelength regime[J]. Applied Physics Letters, 117, 094101(2020).
[55] Xu C L, Qu S B, Pang Y Q et al. Metamaterial absorber for frequency selective thermal radiation[J]. Infrared Physics & Technology, 88, 133-138(2018).
[56] Cao T, Lian M, Liu K et al. Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces[J]. International Journal of Extreme Manufacturing, 4, 015402(2022).
[57] Chen C, Liu Y H, Jiang Z Y et al. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography[J]. Optics Express, 30, 13391-13403(2022).
[58] Zhu Y, Hou G Z, Wang Q Y et al. Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces[J]. Nanoscale, 14, 10816-10822(2022).
[59] Zhou J R, Zhan Z G, Zhu F D et al. Preparation of flexible wavelength-selective metasurface for infrared radiation regulation[J]. ACS Applied Materials & Interfaces, 15, 21629-21639(2023).
[60] Schuller J A, Taubner T, Brongersma M L. Optical antenna thermal emitters[J]. Nature Photonics, 3, 658-661(2009).
[61] Liu B A, Gong W, Yu B W et al. Perfect thermal emission by nanoscale transmission line resonators[J]. Nano Letters, 17, 666-672(2017).
[62] Dahan N, Niv A, Biener G et al. Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons[J]. Applied Physics Letters, 86, 191102(2005).
[63] Mason J A, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial[J]. Applied Physics Letters, 98, 241105(2011).
[64] Shitrit N, Yulevich I, Maguid E et al. Spin-optical metamaterial route to spin-controlled photonics[J]. Science, 340, 724-726(2013).
[65] Khandekar C, Jacob Z. Circularly polarized thermal radiation from nonequilibrium coupled antennas[J]. Physical Review Applied, 12, 014053(2019).
[66] Gao W L, Doiron C F, Li X W et al. Macroscopically aligned carbon nanotubes as a refractory platform for hyperbolic thermal emitters[J]. ACS Photonics, 6, 1602-1609(2019).
[67] Dahan N, Gorodetski Y, Frischwasser K et al. Geometric Doppler effect: spin-split dispersion of thermal radiation[J]. Physical Review Letters, 105, 136402(2010).
[68] Dyakov S A, Semenenko V A, Gippius N A et al. Magnetic field free circularly polarized thermal emission from a chiral metasurface[J]. Physical Review B, 98, 235416(2018).
[69] Ginn J, Shelton D, Krenz P et al. Polarized infrared emission using frequency selective surfaces[J]. Optics Express, 18, 4557-4563(2010).
[70] Nguyen A, Hugonin J P, Coutrot A L et al. Large circular dichroism in the emission from an incandescent metasurface[J]. Optica, 10, 232-238(2023).
[71] Wang X J, Sentz T, Bharadwaj S et al. Observation of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces[J]. Science Advances, 9, eade4203(2023).
[72] Dahan N, Niv A, Biener G et al. Enhanced coherency of thermal emission: beyond the limitation imposed by delocalized surface waves[J]. Physical Review B, 76, 045427(2007).
[73] Arnold C, Marquier F, Garin M et al. Coherent thermal infrared emission by two-dimensional silicon carbide gratings[J]. Physical Review B, 86, 035316(2012).
[74] Lu G Y, Tadjer M, Caldwell J D et al. Multi-frequency coherent emission from superstructure thermal emitters[J]. Applied Physics Letters, 118, 141102(2021).
[75] Liu J J, Guler U, Lagutchev A et al. Quasi-coherent thermal emitter based on refractory plasmonic materials[J]. Optical Materials Express, 5, 2721-2728(2015).
[76] Liao C Y, Wang C M, Cheng B H et al. Quasi-coherent thermal radiation with multiple resonant plasmonic cavities[J]. Applied Physics Letters, 109, 261101(2016).
[77] Greffet J J, Carminati R, Joulain K et al. Coherent emission of light by thermal sources[J]. Nature, 416, 61-64(2002).
[78] Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film[J]. Optics Express, 16, 11328-11336(2008).
[79] Sun K L, Levy U, Han Z H. Thermal emission with high temporal and spatial coherence by harnessing quasiguided modes[J]. Physical Review Applied, 20, 024033(2023).
[80] Yu J B, Qin R, Ying Y B et al. Asymmetric directional control of thermal emission[J]. Advanced Materials, 35, 2302478(2023).
[81] Biener G, Dahan N, Niv A et al. Highly coherent thermal emission obtained by plasmonic bandgap structures[J]. Applied Physics Letters, 92, 081913(2008).
[82] Yang Y, Taylor S, Alshehri H et al. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces[J]. Applied Physics Letters, 111, 051904(2017).
[83] Han S E, Norris D J. Beaming thermal emission from hot metallic bull’s eyes[J]. Optics Express, 18, 4829-4837(2010).
[84] Park J H, Han S E, Nagpal P et al. Observation of thermal beaming from tungsten and molybdenum bull’s eyes[J]. ACS Photonics, 3, 494-500(2016).
[85] Costantini D, Lefebvre A, Coutrot A L et al. Plasmonic metasurface for directional and frequency-selective thermal emission[J]. Physical Review Applied, 4, 014023(2015).
[86] Overvig A C, Mann S A, Alù A. Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions[J]. Physical Review X, 11, 021050(2021).
[87] Chalabi H, Alù A, Brongersma M L. Focused thermal emission from a nanostructured SiC surface[J]. Physical Review B, 94, 094307(2016).
[88] Zhou M, Khoram E, Liu D J et al. Self-focused thermal emission and holography realized by mesoscopic thermal emitters[J]. ACS Photonics, 8, 497-504(2021).
[89] Wang T, Li P N, Chigrin D N et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale[J]. ACS Photonics, 4, 1753-1760(2017).
[90] Lee G J, Kim D H, Heo S Y et al. Spectrally and spatially selective emitters using polymer hybrid spoof plasmonics[J]. ACS Applied Materials & Interfaces, 12, 53206-53214(2020).
[91] Audhkhasi R, Zhao B, Fan S H et al. Spectral emissivity modeling in multi-resonant systems using coupled-mode theory[J]. Optics Express, 30, 9463-9472(2022).
[92] Nishijima Y, Morimoto S, Balčytis A et al. Coupling of molecular vibration and metasurface modes for efficient mid-infrared emission[J]. Journal of Materials Chemistry C, 10, 451-462(2022).
[93] Zhang X, Liu H, Zhang Z G et al. Controlling thermal emission of phonon by magnetic metasurfaces[J]. Scientific Reports, 7, 41858(2017).
[94] Zhang X, Zhang Z G, Wang Q et al. Controlling thermal emission by parity-symmetric Fano resonance of optical absorbers in metasurfaces[J]. ACS Photonics, 6, 2671-2676(2019).
[95] Zhong F, Ding K, Zhang Y et al. Angle-resolved thermal emission spectroscopy characterization of non-Hermitian metacrystals[J]. Physical Review Applied, 13, 014071(2020).
[96] Zhong F, Zhang Y, Zhu S N et al. Probing mid-infrared surface interface states based on thermal emission[J]. Optics Express, 29, 35216-35225(2021).
[97] Freitag M, Chiu H Y, Steiner M et al. Thermal infrared emission from biased graphene[J]. Nature Nanotechnology, 5, 497-501(2010).
[98] Brar V W, Sherrott M C, Jang M S et al. Electronic modulation of infrared radiation in graphene plasmonic resonators[J]. Nature Communications, 6, 7032(2015).
[99] Luo F, Fan Y S, Peng G et al. Graphene thermal emitter with enhanced joule heating and localized light emission in air[J]. ACS Photonics, 6, 2117-2125(2019).
[100] Li Y Y, Ferreyra P, Swan A K et al. Current-driven terahertz light emission from graphene plasmonic oscillations[J]. ACS Photonics, 6, 2562-2569(2019).
[101] Zhang Y M, Antezza M, Wang J S. Controllable thermal radiation from twisted bilayer graphene[J]. International Journal of Heat and Mass Transfer, 194, 123076(2022).
[102] Shi C, Mahlmeister N H, Luxmoore I J et al. Metamaterial-based graphene thermal emitter[J]. Nano Research, 11, 3567-3573(2018).
[103] Shiue R J, Gao Y D, Tan C et al. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity[J]. Nature Communications, 10, 109(2019).
[104] Yuan H, Zhang H, Huang K W et al. Dual-emitter graphene glass fiber fabric for radiant heating[J]. ACS Nano, 16, 2577-2584(2022).
[105] Park J, Kang J H, Liu X G et al. Dynamic thermal emission control with InAs-based plasmonic metasurfaces[J]. Science Advances, 4, eaat3163(2018).
[106] Inoue T, de Zoysa M, Asano T et al. Realization of dynamic thermal emission control[J]. Nature Materials, 13, 928-931(2014).
[107] Kang D D, Inoue T, Asano T et al. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared[J]. ACS Photonics, 6, 1565-1571(2019).
[108] Wu S H, Chen M K, Barako M T et al. Thermal homeostasis using microstructured phase-change materials[J]. Optica, 4, 1390-1396(2017).
[109] Chandra S, Franklin D, Cozart J et al. Adaptive multispectral infrared camouflage[J]. ACS Photonics, 5, 4513-4519(2018).
[110] Ito K, Watari T, Nishikawa K et al. Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons[J]. APL Photonics, 3, 086101(2018).
[111] Long L S, Taylor S, Wang L P. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces[J]. ACS Photonics, 7, 2219-2227(2020).
[112] Sun K, Xiao W, Wheeler C et al. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications[J]. Nanophotonics, 11, 4101-4114(2022).
[113] Qu Y R, Li Q, Du K K et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[J]. Laser & Photonics Reviews, 11, 1700091(2017).
[114] Cao T, Zhang X Y, Dong W L et al. Tuneable thermal emission using chalcogenide metasurface[J]. Advanced Optical Materials, 6, 1800169(2018).
[115] Li S C, Simpson R E, Shin S. Enhanced far-field coherent thermal emission using mid-infrared bilayer metasurfaces[J]. Nanoscale, 15, 15965-15974(2023).
[116] Khalichi B, Ghobadi A, Osgouei A K et al. Phase-change Fano resonator for active modulation of thermal emission[J]. Nanoscale, 15, 10783-10793(2023).
[117] Conrads L, Honné N, Ulm A et al. Reconfigurable and polarization-dependent grating absorber for large-area emissivity control based on the plasmonic phase-change material In3SbTe2[J]. Advanced Optical Materials, 11, 2202696(2023).
[118] Roberts J A, Ho P H, Yu S J et al. Electrically driven hyperbolic nanophotonic resonators as high speed, spectrally selective thermal radiators[J]. Nano Letters, 22, 5832-5840(2022).
[119] Li J Y, Li Z, Liu X et al. Active control of thermal emission by graphene-nanowire coupled plasmonic metasurfaces[J]. Physical Review B, 106, 115416(2022).
[120] Miyoshi Y, Fukazawa Y, Amasaka Y et al. High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer[J]. Nature Communications, 9, 1279(2018).
[121] Xu Z Q, Li Q, Du K K et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission[J]. Laser & Photonics Reviews, 14, 1900162(2020).
[122] Sun R Z, Zhou P H, Ai W S et al. Broadband switching of mid-infrared atmospheric windows by VO2-based thermal emitter[J]. Optics Express, 27, 11537-11546(2019).
[123] Liu X Y, Padilla W J. Reconfigurable room temperature metamaterial infrared emitter[J]. Optica, 4, 430-433(2017).
[124] Coppens Z J, Valentine J G. Spatial and temporal modulation of thermal emission[J]. Advanced Materials, 29, 1701275(2017).
[125] Kim C, Kim Y, Kang D et al. Laser-printed emissive metasurface as an anticounterfeiting platform[J]. Laser & Photonics Reviews, 16, 2200215(2022).
[126] Xu Z Q, Luo H, Zhu H Z et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Letters, 21, 5269-5276(2021).
[127] Tsurimaki Y, Qian X, Pajovic S et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking[J]. Physical Review B, 101, 165426(2020).
[128] Shayegan K J, Zhao B, Kim Y et al. Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs[J]. Science Advances, 8, eabm4308(2022).
[129] Wu J, Wu F, Zhao T C et al. Tunable nonreciprocal thermal emitter based on metal grating and graphene[J]. International Journal of Thermal Sciences, 172, 107316(2022).
[130] Zhang Z N, Zhu L X. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer[J]. Physical Review Applied, 18, 027001(2022).
[131] Zhao B, Wang J H, Zhao Z X et al. Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels[J]. Physical Review Applied, 16, 064001(2021).
[132] Guo C, Zhao B, Fan S H. Adjoint Kirchhoff’s law and general symmetry implications for all thermal emitters[J]. Physical Review X, 12, 021023(2022).
[133] Zhu L X, Fan S H. Near complete violation of detailed balance in thermal radiation[J]. Physical Review B, 90, 220301(2014).
[134] Zhao B, Shi Y, Wang J H et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field[J]. Optics Letters, 44, 4203-4206(2019).
[135] Zhao B, Guo C, Garcia C A C et al. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals[J]. Nano Letters, 20, 1923-1927(2020).
[136] Park Y, Asadchy V S, Zhao B et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures[J]. ACS Photonics, 8, 2417-2424(2021).
[137] Hadad Y, Soric J C, Alu A. Breaking temporal symmetries for emission and absorption[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 3471-3475(2016).
[138] Ghanekar A, Wang J H, Fan S H et al. Violation of Kirchhoff’s law of thermal radiation with space-time modulated grating[J]. ACS Photonics, 9, 1157-1164(2022).
[139] Ghanekar A, Wang J H, Guo C et al. Nonreciprocal thermal emission using spatiotemporal modulation of graphene[J]. ACS Photonics, 10, 170-178(2023).
[140] Shayegan K J, Biswas S, Zhao B et al. Direct observation of the violation of Kirchhoff’s law of thermal radiation[J]. Nature Photonics, 17, 891-896(2023).
[141] Khandekar C, Messina R, Rodriguez A W. Near-field refrigeration and tunable heat exchange through four-wave mixing[J]. AIP Advances, 8, 055029(2018).
[142] Khandekar C, Yang L P, Rodriguez A W et al. Quantum nonlinear mixing of thermal photons to surpass the blackbody limit[J]. Optics Express, 28, 2045-2059(2020).
[143] Cuevas J C, García-Vidal F J. Radiative heat transfer[J]. ACS Photonics, 5, 3896-3915(2018).
[144] Xiao Y Z, Sheldon M, Kats M A. Super-Planckian emission cannot really be ‘thermal’[J]. Nature Photonics, 16, 397-401(2022).
[145] Rodriguez A W, Ilic O, Bermel P et al. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials[J]. Physical Review Letters, 107, 114302(2011).
[146] Guérout R, Lussange J, Rosa F S S et al. Enhanced radiative heat transfer between nanostructured gold plates[J]. Physical Review B, 85, 180301(2012).
[147] Dai J, Dyakov S A, Yan M. Enhanced near-field radiative heat transfer between corrugated metal plates: role of spoof surface plasmon polaritons[J]. Physical Review B, 92, 035419(2015).
[148] Ghanekar A, Ji J, Zheng Y. High-rectification near-field thermal diode using phase change periodic nanostructure[J]. Applied Physics Letters, 109, 123106(2016).
[149] Yang Y, Wang L P. Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps[J]. Physical Review Letters, 117, 044301(2016).
[150] Messina R, Noto A, Guizal B et al. Radiative heat transfer between metallic gratings using Fourier modal method with adaptive spatial resolution[J]. Physical Review B, 95, 125404(2017).
[151] Liu X L, Zhang Z M. Near-field thermal radiation between metasurfaces[J]. ACS Photonics, 2, 1320-1326(2015).
[152] Fernández-Hurtado V, García-Vidal F J, Fan S H et al. Enhancing near-field radiative heat transfer with Si-based metasurfaces[J]. Physical Review Letters, 118, 203901(2017).
[153] Gomez-Diaz J S, Alù A. Flatland optics with hyperbolic metasurfaces[J]. ACS Photonics, 3, 2211-2224(2016).
[154] Zhao B, Guizal B, Zhang Z M et al. Near-field heat transfer between graphene/hBN multilayers[J]. Physical Review B, 95, 245437(2017).
[155] Shi K Z, Bao F L, He S L. Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures[J]. ACS Photonics, 4, 971-978(2017).
[156] Zhang Y, Antezza M, Yi H L et al. Metasurface-mediated anisotropic radiative heat transfer between nanoparticles[J]. Physical Review B, 100, 085426(2019).
[157] Lim M, Lee S S, Lee B J. Near-field thermal radiation between graphene-covered doped silicon plates[J]. Optics Express, 21, 22173-22185(2013).
[158] Ilic O, Thomas N H, Christensen T et al. Active radiative thermal switching with graphene plasmon resonators[J]. ACS Nano, 12, 2474-2481(2018).
[159] Tang G M, Zhang L, Zhang Y et al. Near-field energy transfer between graphene and magneto-optic media[J]. Physical Review Letters, 127, 247401(2021).
[160] Kajihara Y, Kosaka K, Komiyama S. Thermally excited near-field radiation and far-field interference[J]. Optics Express, 19, 7695-7704(2011).
[161] Zare S, Pouria R, Chow P K et al. Probing near-field thermal emission of localized surface phonons from silicon carbide nanopillars[J]. ACS Photonics, 10, 401-411(2023).
[162] St-Gelais R, Zhu L X, Fan S H et al. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime[J]. Nature Nanotechnology, 11, 515-519(2016).
[163] Yang J, Du W, Su Y S et al. Observing of the super-Planckian near-field thermal radiation between graphene sheets[J]. Nature Communications, 9, 4033(2018).
[164] Bhatt G R, Zhao B, Roberts S et al. Integrated near-field thermo-photovoltaics for heat recycling[J]. Nature Communications, 11, 2545(2020).
[165] Rephaeli E, Raman A, Fan S H. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 13, 1457-1461(2013).
[166] Raman A P, Abou Anoma M, Zhu L X et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 515, 540-544(2014).
[167] Zhai Y, Ma Y G, David S N et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 355, 1062-1066(2017).
[168] Sun K, Riedel C A, Wang Y D et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft[J]. ACS Photonics, 5, 495-501(2018).
[169] Salary M M, Mosallaei H. Photonic metasurfaces as relativistic light sails for Doppler-broadened stable beam-riding and radiative cooling[J]. Laser & Photonics Reviews, 14, 1900311(2020).
[170] Li D, Liu X, Li W et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 16, 153-158(2021).
[171] Zeng S N, Pian S J, Su M Y et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 373, 692-696(2021).
[172] Lin C J, Li Y, Chi C et al. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates[J]. Advanced Materials, 34, 2109350(2022).
[173] Zhu Y N, Zhou Y W, Qin B et al. Night-time radiative warming using the atmosphere[J]. Light: Science & Applications, 12, 268(2023).
[174] Chang C C, Kort-Kamp W J M, Nogan J et al. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting[J]. Nano Letters, 18, 7665-7673(2018).
[175] Rephaeli E, Fan S H. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit[J]. Optics Express, 17, 15145-15159(2009).
[176] Nguyen-Huu N, Chen Y B, Lo Y L. Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating[J]. Optics Express, 20, 5882-5890(2012).
[177] Wang L P, Zhang Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics[J]. Applied Physics Letters, 100, 063902(2012).
[178] Wu C H, Neuner B, John J et al. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems[J]. Journal of Optics, 14, 024005(2012).
[179] Zhao B, Wang L P, Shuai Y et al. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure[J]. International Journal of Heat and Mass Transfer, 67, 637-645(2013).
[180] Shemelya C, DeMeo D, Latham N P et al. Stable high temperature metamaterial emitters for thermophotovoltaic applications[J]. Applied Physics Letters, 104, 201113(2014).
[181] Wang H C, Chen Q, Wen L et al. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application[J]. Photonics Research, 3, 329-334(2015).
[182] Coppens Z J, Kravchenko I I, Valentine J G. Lithography-free large-area metamaterials for stable thermophotovoltaic energy conversion[J]. Advanced Optical Materials, 4, 671-676(2016).
[183] Wang H, Chang J Y, Yang Y et al. Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters[J]. International Journal of Heat and Mass Transfer, 98, 788-798(2016).
[184] Woolf D N, Kadlec E A, Bethke D et al. High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter[J]. Optica, 5, 213-218(2018).
[185] Abbas M A, Kim J, Rana A S et al. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems[J]. Nanoscale, 14, 6425-6436(2022).
[186] Zhang S Y, Zhong F, Lin Z H et al. Spectrum-selective high-temperature tolerant thermal emitter by dual-coherence enhanced absorption for solar thermophotovoltaics[J]. Advanced Optical Materials, 12, 2301726(2024).
[187] Miyazaki H T, Kasaya T, Iwanaga M et al. Dual-band infrared metasurface thermal emitter for CO2 sensing[J]. Applied Physics Letters, 105, 121107(2014).
[188] Pusch A, de Luca A, Oh S S et al. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices[J]. Scientific Reports, 5, 17451(2015).
[189] Lochbaum A, Dorodnyy A, Koch U et al. Compact mid-infrared gas sensing enabled by an all-metamaterial design[J]. Nano Letters, 20, 4169-4176(2020).
[190] Li N X, Yuan H Y, Xu L F et al. Tailorable infrared emission of microelectromechanical system-based thermal emitters with NiO films for gas sensing[J]. Optics Express, 29, 19084-19093(2021).
[191] Livingood A, Nolen J R, Folland T G et al. Filterless nondispersive infrared sensing using narrowband infrared emitting metamaterials[J]. ACS Photonics, 8, 472-480(2021).
[192] Barho F B, Gonzalez-Posada F, Bomers M et al. Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces[J]. ACS Photonics, 6, 1506-1514(2019).
[193] Nakagawa K, Shimura Y, Fukazawa Y et al. Microemitter-based IR spectroscopy and imaging with multilayer graphene thermal emission[J]. Nano Letters, 22, 3236-3244(2022).
[194] Salihoglu O, Uzlu H B, Yakar O et al. Graphene-based adaptive thermal camouflage[J]. Nano Letters, 18, 4541-4548(2018).
[195] Xie X, Li X, Pu M B et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Advanced Functional Materials, 28, 1706673(2018).
[196] Lee N, Kim T, Lim J S et al. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation[J]. ACS Applied Materials & Interfaces, 11, 21250-21257(2019).
[197] Liu Y D, Song J L, Zhao W X et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface[J]. Nanophotonics, 9, 855-863(2020).
[198] Song J L, Huang S Y, Ma Y P et al. Radiative metasurface for thermal camouflage, illusion and messaging[J]. Optics Express, 28, 875-885(2020).
[199] Wang J, Yang F B, Xu L J et al. Omnithermal restructurable metasurfaces for both infrared-light illusion and visible-light similarity[J]. Physical Review Applied, 14, 014008(2020).
[200] Zhu H Z, Li Q, Tao C N et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communications, 12, 1805(2021).
[201] Kim J, Park C, Hahn J W. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range[J]. Advanced Optical Materials, 10, 2101930(2022).
[202] Wu Y J, Luo J, Pu M B et al. Optically transparent infrared selective emitter for visible-infrared compatible camouflage[J]. Optics Express, 30, 17259-17269(2022).
[203] Zhang J G, Wen Z J, Zhou Z J et al. Long-wavelength infrared selective emitter for thermal infrared camouflage under a hot environment[J]. Optics Express, 30, 24132-24144(2022).
[204] Lee N, Lim J S, Chang I et al. Flexible assembled metamaterials for infrared and microwave camouflage[J]. Advanced Optical Materials, 10, 2200448(2022).
[205] Shim H B, Han K, Song J et al. A multispectral single-layer frequency selective surface absorber for infrared and millimeter wave selective bi-stealth[J]. Advanced Optical Materials, 10, 2102107(2022).
[206] Qin B, Zhu Y N, Zhou Y W et al. Whole-infrared-band camouflage with dual-band radiative heat dissipation[J]. Light: Science & Applications, 12, 246(2023).
[207] Chu Q Q, Zhang F Y, Zhang Y et al. Integrated thermal emission microchip based on meta-cavity array[J]. Nanophotonics, 11, 4263-4271(2022).
[208] Chu Q Q, Zhang F Y, Zhang Y et al. Indirect measurement of infrared absorption spectrum through thermal emission of meta-cavity array[J]. Optics Express, 31, 39832-39840(2023).
[209] Zhang F Y, Chu Q Q, Wang Q et al. Multiple symmetry protected BIC lines in two dimensional synthetic parameter space[J]. Nanophotonics, 12, 2405-2413(2023).
[210] Li Q, Ying Y B, Qiu W. Research progress of thermal emission direction control[J]. Acta Optica Sinica, 44, 1900001(2024).
[211] Sun Y W, He N, Zhang Z et al. Absorbing metasurfaces and their applications in the mid-infrared band[J]. Acta Optica Sinica, 42, 1704001(2022).