• Acta Optica Sinica
  • Vol. 44, Issue 19, 1925001 (2024)
Xiaohe Shang1, Fan Zhong2,*, Jinguang Shang1, Ye Zhang1..., Yanling Xiao1, Shining Zhu1 and Hui Liu1,**|Show fewer author(s)
Author Affiliations
  • 1School of Physics, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu , China
  • 2School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, Jiangsu , China
  • show less
    DOI: 10.3788/AOS241122 Cite this Article Set citation alerts
    Xiaohe Shang, Fan Zhong, Jinguang Shang, Ye Zhang, Yanling Xiao, Shining Zhu, Hui Liu. Thermal Emission Manipulation and Its Infrared Applications Based on Metasurfaces (Invited)[J]. Acta Optica Sinica, 2024, 44(19): 1925001 Copy Citation Text show less
    References

    [1] Diem M, Koschny T, Soukoulis C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime[J]. Physical Review B, 79, 033101(2009).

    [2] Doiron C F, Naik G V. Non-Hermitian selective thermal emitters using metal-semiconductor hybrid resonators[J]. Advanced Materials, 31, e1904154(2019).

    [3] Dyachenko P N, Molesky S, Petrov A Y et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions[J]. Nature Communications, 7, 11809(2016).

    [4] Xu J, Mandal J, Raman A P. Broadband directional control of thermal emission[J]. Science, 372, 393-397(2021).

    [5] Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation[J]. Applied Physics Letters, 83, 380-382(2003).

    [6] Arpin K A, Losego M D, Cloud A N et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification[J]. Nature Communications, 4, 2630(2013).

    [7] Rinnerbauer V, Lenert A, Bierman D M et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics[J]. Advanced Energy Materials, 4, 1400334(2014).

    [8] Liu X X, Li Z W, Wen Z J et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter[J]. Nanoscale, 11, 19742-19750(2019).

    [9] Liu L X, Zhang X Q, Kenney M et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 26, 5031-5036(2014).

    [10] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [11] Wang Q, Xiao M, Liu H et al. Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal[J]. Physical Review B, 93, 041415(2016).

    [12] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [13] Gao L H, Cheng Q, Yang J et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 4, e324(2015).

    [14] Xiao S Y, Zhong F, Liu H et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nature Communications, 6, 8360(2015).

    [15] Maguid E, Yulevich I, Veksler D et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 352, 1202-1206(2016).

    [16] Qiao T, Hu M Y, Jiang X et al. Generation and tunability of supermodes in Tamm plasmon topological superlattices[J]. ACS Photonics, 8, 2095-2102(2021).

    [17] Liu H, Cao J X, Zhu S N et al. Lagrange model for the chiral optical properties of stereometamaterials[J]. Physical Review B, 81, 241403(2010).

    [18] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [19] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014).

    [20] Chen K, Feng Y J, Monticone F et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 29, 1606422(2017).

    [21] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [22] Neubrech F, Huck C, Weber K et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 117, 5110-5145(2017).

    [23] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [24] Zhu Z H, Liu H, Wang S M et al. Optically pumped nanolaser based on two magnetic plasmon resonance modes[J]. Applied Physics Letters, 94, 103106(2009).

    [25] Hao J M, Wang J, Liu X L et al. High performance optical absorber based on a plasmonic metamaterial[J]. Applied Physics Letters, 96, 251104(2010).

    [26] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).

    [27] Liu H, Ng J, Wang S B et al. Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities[J]. Physical Review Letters, 106, 087401(2011).

    [28] Liu H, Li G X, Li K F et al. Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials[J]. Physical Review B, 84, 235437(2011).

    [29] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [30] Chen H T. Interference theory of metamaterial perfect absorbers[J]. Optics Express, 20, 7165-7172(2012).

    [31] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 6, 7998-8006(2012).

    [32] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 14, 3510-3514(2014).

    [33] Wang C M, Chang Y C, Tsai M W et al. Reflection and emission properties of an infrared emitter[J]. Optics Express, 15, 14673-14678(2007).

    [34] Park S J, Kim Y B, Moon Y J et al. Tuning of polarized room-temperature thermal radiation based on nanogap plasmon resonance[J]. Optics Express, 28, 15472-15481(2020).

    [35] Ikeda K, Miyazaki H T, Kasaya T et al. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities[J]. Applied Physics Letters, 92, 021117(2008).

    [36] Liu Z, Shimizu M, Yugami H. Emission bandwidth control on a two-dimensional superlattice microcavity array[J]. Optics Express, 30, 13839-13846(2022).

    [37] Zhu L X, Sandhu S, Otey C et al. Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes[J]. Applied Physics Letters, 102, 103104(2013).

    [38] Woolf D, Hensley J, Cederberg J G et al. Heterogeneous metasurface for high temperature selective emission[J]. Applied Physics Letters, 105, 081110(2014).

    [39] Asano T, Suemitsu M, Hashimoto K et al. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor[J]. Science Advances, 2, e1600499(2016).

    [40] Howes A, Nolen J R, Caldwell J D et al. Near-unity and narrowband thermal emissivity in balanced dielectric metasurfaces[J]. Advanced Optical Materials, 8, 1901470(2020).

    [41] Li J Y, Yu B W, Shen S. Scale law of far-field thermal radiation from plasmonic metasurfaces[J]. Physical Review Letters, 124, 137401(2020).

    [42] Kudyshev Z A, Kildishev A V, Shalaev V M et al. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization[J]. Applied Physics Reviews, 7, 021407(2020).

    [43] Makhsiyan M, Bouchon P, Jaeck J et al. Shaping the spatial and spectral emissivity at the diffraction limit[J]. Applied Physics Letters, 107, 251103(2015).

    [44] Streyer W, Feng K, Zhong Y et al. Selective absorbers and thermal emitters for far-infrared wavelengths[J]. Applied Physics Letters, 107, 081105(2015).

    [45] Matsuno Y, Sakurai A. Perfect infrared absorber and emitter based on a large-area metasurface[J]. Optical Materials Express, 7, 618-626(2017).

    [46] Lochbaum A, Fedoryshyn Y, Dorodnyy A et al. On-chip narrowband thermal emitter for mid-IR optical gas sensing[J]. ACS Photonics, 4, 1371-1380(2017).

    [47] Liu X L, Tyler T, Starr T et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 107, 045901(2011).

    [48] de Zoysa M, Asano T, Mochizuki K et al. Conversion of broadband to narrowband thermal emission through energy recycling[J]. Nature Photonics, 6, 535-539(2012).

    [49] Argyropoulos C, Le K Q, Mattiucci N et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces[J]. Physical Review B, 87, 205112(2013).

    [50] Hossain M M, Jia B H, Gu M. A metamaterial emitter for highly efficient radiative cooling[J]. Advanced Optical Materials, 3, 1047-1051(2015).

    [51] Kong A R, Cai B Y, Shi P et al. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling[J]. Optics Express, 27, 30102-30115(2019).

    [52] Liu G Q, Liu X S, Chen J et al. Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters[J]. Solar Energy Materials and Solar Cells, 190, 20-29(2019).

    [53] Zou C J, Ren G H, Hossain M M et al. Metal-loaded dielectric resonator metasurfaces for radiative cooling[J]. Advanced Optical Materials, 5, 1700460(2017).

    [54] Song J, Seo J, Han J et al. Ultrahigh emissivity of grating-patterned PDMS film from 8 to 13 μm wavelength regime[J]. Applied Physics Letters, 117, 094101(2020).

    [55] Xu C L, Qu S B, Pang Y Q et al. Metamaterial absorber for frequency selective thermal radiation[J]. Infrared Physics & Technology, 88, 133-138(2018).

    [56] Cao T, Lian M, Liu K et al. Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces[J]. International Journal of Extreme Manufacturing, 4, 015402(2022).

    [57] Chen C, Liu Y H, Jiang Z Y et al. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography[J]. Optics Express, 30, 13391-13403(2022).

    [58] Zhu Y, Hou G Z, Wang Q Y et al. Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces[J]. Nanoscale, 14, 10816-10822(2022).

    [59] Zhou J R, Zhan Z G, Zhu F D et al. Preparation of flexible wavelength-selective metasurface for infrared radiation regulation[J]. ACS Applied Materials & Interfaces, 15, 21629-21639(2023).

    [60] Schuller J A, Taubner T, Brongersma M L. Optical antenna thermal emitters[J]. Nature Photonics, 3, 658-661(2009).

    [61] Liu B A, Gong W, Yu B W et al. Perfect thermal emission by nanoscale transmission line resonators[J]. Nano Letters, 17, 666-672(2017).

    [62] Dahan N, Niv A, Biener G et al. Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons[J]. Applied Physics Letters, 86, 191102(2005).

    [63] Mason J A, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial[J]. Applied Physics Letters, 98, 241105(2011).

    [64] Shitrit N, Yulevich I, Maguid E et al. Spin-optical metamaterial route to spin-controlled photonics[J]. Science, 340, 724-726(2013).

    [65] Khandekar C, Jacob Z. Circularly polarized thermal radiation from nonequilibrium coupled antennas[J]. Physical Review Applied, 12, 014053(2019).

    [66] Gao W L, Doiron C F, Li X W et al. Macroscopically aligned carbon nanotubes as a refractory platform for hyperbolic thermal emitters[J]. ACS Photonics, 6, 1602-1609(2019).

    [67] Dahan N, Gorodetski Y, Frischwasser K et al. Geometric Doppler effect: spin-split dispersion of thermal radiation[J]. Physical Review Letters, 105, 136402(2010).

    [68] Dyakov S A, Semenenko V A, Gippius N A et al. Magnetic field free circularly polarized thermal emission from a chiral metasurface[J]. Physical Review B, 98, 235416(2018).

    [69] Ginn J, Shelton D, Krenz P et al. Polarized infrared emission using frequency selective surfaces[J]. Optics Express, 18, 4557-4563(2010).

    [70] Nguyen A, Hugonin J P, Coutrot A L et al. Large circular dichroism in the emission from an incandescent metasurface[J]. Optica, 10, 232-238(2023).

    [71] Wang X J, Sentz T, Bharadwaj S et al. Observation of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces[J]. Science Advances, 9, eade4203(2023).

    [72] Dahan N, Niv A, Biener G et al. Enhanced coherency of thermal emission: beyond the limitation imposed by delocalized surface waves[J]. Physical Review B, 76, 045427(2007).

    [73] Arnold C, Marquier F, Garin M et al. Coherent thermal infrared emission by two-dimensional silicon carbide gratings[J]. Physical Review B, 86, 035316(2012).

    [74] Lu G Y, Tadjer M, Caldwell J D et al. Multi-frequency coherent emission from superstructure thermal emitters[J]. Applied Physics Letters, 118, 141102(2021).

    [75] Liu J J, Guler U, Lagutchev A et al. Quasi-coherent thermal emitter based on refractory plasmonic materials[J]. Optical Materials Express, 5, 2721-2728(2015).

    [76] Liao C Y, Wang C M, Cheng B H et al. Quasi-coherent thermal radiation with multiple resonant plasmonic cavities[J]. Applied Physics Letters, 109, 261101(2016).

    [77] Greffet J J, Carminati R, Joulain K et al. Coherent emission of light by thermal sources[J]. Nature, 416, 61-64(2002).

    [78] Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film[J]. Optics Express, 16, 11328-11336(2008).

    [79] Sun K L, Levy U, Han Z H. Thermal emission with high temporal and spatial coherence by harnessing quasiguided modes[J]. Physical Review Applied, 20, 024033(2023).

    [80] Yu J B, Qin R, Ying Y B et al. Asymmetric directional control of thermal emission[J]. Advanced Materials, 35, 2302478(2023).

    [81] Biener G, Dahan N, Niv A et al. Highly coherent thermal emission obtained by plasmonic bandgap structures[J]. Applied Physics Letters, 92, 081913(2008).

    [82] Yang Y, Taylor S, Alshehri H et al. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces[J]. Applied Physics Letters, 111, 051904(2017).

    [83] Han S E, Norris D J. Beaming thermal emission from hot metallic bull’s eyes[J]. Optics Express, 18, 4829-4837(2010).

    [84] Park J H, Han S E, Nagpal P et al. Observation of thermal beaming from tungsten and molybdenum bull’s eyes[J]. ACS Photonics, 3, 494-500(2016).

    [85] Costantini D, Lefebvre A, Coutrot A L et al. Plasmonic metasurface for directional and frequency-selective thermal emission[J]. Physical Review Applied, 4, 014023(2015).

    [86] Overvig A C, Mann S A, Alù A. Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions[J]. Physical Review X, 11, 021050(2021).

    [87] Chalabi H, Alù A, Brongersma M L. Focused thermal emission from a nanostructured SiC surface[J]. Physical Review B, 94, 094307(2016).

    [88] Zhou M, Khoram E, Liu D J et al. Self-focused thermal emission and holography realized by mesoscopic thermal emitters[J]. ACS Photonics, 8, 497-504(2021).

    [89] Wang T, Li P N, Chigrin D N et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale[J]. ACS Photonics, 4, 1753-1760(2017).

    [90] Lee G J, Kim D H, Heo S Y et al. Spectrally and spatially selective emitters using polymer hybrid spoof plasmonics[J]. ACS Applied Materials & Interfaces, 12, 53206-53214(2020).

    [91] Audhkhasi R, Zhao B, Fan S H et al. Spectral emissivity modeling in multi-resonant systems using coupled-mode theory[J]. Optics Express, 30, 9463-9472(2022).

    [92] Nishijima Y, Morimoto S, Balčytis A et al. Coupling of molecular vibration and metasurface modes for efficient mid-infrared emission[J]. Journal of Materials Chemistry C, 10, 451-462(2022).

    [93] Zhang X, Liu H, Zhang Z G et al. Controlling thermal emission of phonon by magnetic metasurfaces[J]. Scientific Reports, 7, 41858(2017).

    [94] Zhang X, Zhang Z G, Wang Q et al. Controlling thermal emission by parity-symmetric Fano resonance of optical absorbers in metasurfaces[J]. ACS Photonics, 6, 2671-2676(2019).

    [95] Zhong F, Ding K, Zhang Y et al. Angle-resolved thermal emission spectroscopy characterization of non-Hermitian metacrystals[J]. Physical Review Applied, 13, 014071(2020).

    [96] Zhong F, Zhang Y, Zhu S N et al. Probing mid-infrared surface interface states based on thermal emission[J]. Optics Express, 29, 35216-35225(2021).

    [97] Freitag M, Chiu H Y, Steiner M et al. Thermal infrared emission from biased graphene[J]. Nature Nanotechnology, 5, 497-501(2010).

    [98] Brar V W, Sherrott M C, Jang M S et al. Electronic modulation of infrared radiation in graphene plasmonic resonators[J]. Nature Communications, 6, 7032(2015).

    [99] Luo F, Fan Y S, Peng G et al. Graphene thermal emitter with enhanced joule heating and localized light emission in air[J]. ACS Photonics, 6, 2117-2125(2019).

    [100] Li Y Y, Ferreyra P, Swan A K et al. Current-driven terahertz light emission from graphene plasmonic oscillations[J]. ACS Photonics, 6, 2562-2569(2019).

    [101] Zhang Y M, Antezza M, Wang J S. Controllable thermal radiation from twisted bilayer graphene[J]. International Journal of Heat and Mass Transfer, 194, 123076(2022).

    [102] Shi C, Mahlmeister N H, Luxmoore I J et al. Metamaterial-based graphene thermal emitter[J]. Nano Research, 11, 3567-3573(2018).

    [103] Shiue R J, Gao Y D, Tan C et al. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity[J]. Nature Communications, 10, 109(2019).

    [104] Yuan H, Zhang H, Huang K W et al. Dual-emitter graphene glass fiber fabric for radiant heating[J]. ACS Nano, 16, 2577-2584(2022).

    [105] Park J, Kang J H, Liu X G et al. Dynamic thermal emission control with InAs-based plasmonic metasurfaces[J]. Science Advances, 4, eaat3163(2018).

    [106] Inoue T, de Zoysa M, Asano T et al. Realization of dynamic thermal emission control[J]. Nature Materials, 13, 928-931(2014).

    [107] Kang D D, Inoue T, Asano T et al. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared[J]. ACS Photonics, 6, 1565-1571(2019).

    [108] Wu S H, Chen M K, Barako M T et al. Thermal homeostasis using microstructured phase-change materials[J]. Optica, 4, 1390-1396(2017).

    [109] Chandra S, Franklin D, Cozart J et al. Adaptive multispectral infrared camouflage[J]. ACS Photonics, 5, 4513-4519(2018).

    [110] Ito K, Watari T, Nishikawa K et al. Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons[J]. APL Photonics, 3, 086101(2018).

    [111] Long L S, Taylor S, Wang L P. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces[J]. ACS Photonics, 7, 2219-2227(2020).

    [112] Sun K, Xiao W, Wheeler C et al. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications[J]. Nanophotonics, 11, 4101-4114(2022).

    [113] Qu Y R, Li Q, Du K K et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[J]. Laser & Photonics Reviews, 11, 1700091(2017).

    [114] Cao T, Zhang X Y, Dong W L et al. Tuneable thermal emission using chalcogenide metasurface[J]. Advanced Optical Materials, 6, 1800169(2018).

    [115] Li S C, Simpson R E, Shin S. Enhanced far-field coherent thermal emission using mid-infrared bilayer metasurfaces[J]. Nanoscale, 15, 15965-15974(2023).

    [116] Khalichi B, Ghobadi A, Osgouei A K et al. Phase-change Fano resonator for active modulation of thermal emission[J]. Nanoscale, 15, 10783-10793(2023).

    [117] Conrads L, Honné N, Ulm A et al. Reconfigurable and polarization-dependent grating absorber for large-area emissivity control based on the plasmonic phase-change material In3SbTe2[J]. Advanced Optical Materials, 11, 2202696(2023).

    [118] Roberts J A, Ho P H, Yu S J et al. Electrically driven hyperbolic nanophotonic resonators as high speed, spectrally selective thermal radiators[J]. Nano Letters, 22, 5832-5840(2022).

    [119] Li J Y, Li Z, Liu X et al. Active control of thermal emission by graphene-nanowire coupled plasmonic metasurfaces[J]. Physical Review B, 106, 115416(2022).

    [120] Miyoshi Y, Fukazawa Y, Amasaka Y et al. High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer[J]. Nature Communications, 9, 1279(2018).

    [121] Xu Z Q, Li Q, Du K K et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission[J]. Laser & Photonics Reviews, 14, 1900162(2020).

    [122] Sun R Z, Zhou P H, Ai W S et al. Broadband switching of mid-infrared atmospheric windows by VO2-based thermal emitter[J]. Optics Express, 27, 11537-11546(2019).

    [123] Liu X Y, Padilla W J. Reconfigurable room temperature metamaterial infrared emitter[J]. Optica, 4, 430-433(2017).

    [124] Coppens Z J, Valentine J G. Spatial and temporal modulation of thermal emission[J]. Advanced Materials, 29, 1701275(2017).

    [125] Kim C, Kim Y, Kang D et al. Laser-printed emissive metasurface as an anticounterfeiting platform[J]. Laser & Photonics Reviews, 16, 2200215(2022).

    [126] Xu Z Q, Luo H, Zhu H Z et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Letters, 21, 5269-5276(2021).

    [127] Tsurimaki Y, Qian X, Pajovic S et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking[J]. Physical Review B, 101, 165426(2020).

    [128] Shayegan K J, Zhao B, Kim Y et al. Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs[J]. Science Advances, 8, eabm4308(2022).

    [129] Wu J, Wu F, Zhao T C et al. Tunable nonreciprocal thermal emitter based on metal grating and graphene[J]. International Journal of Thermal Sciences, 172, 107316(2022).

    [130] Zhang Z N, Zhu L X. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer[J]. Physical Review Applied, 18, 027001(2022).

    [131] Zhao B, Wang J H, Zhao Z X et al. Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels[J]. Physical Review Applied, 16, 064001(2021).

    [132] Guo C, Zhao B, Fan S H. Adjoint Kirchhoff’s law and general symmetry implications for all thermal emitters[J]. Physical Review X, 12, 021023(2022).

    [133] Zhu L X, Fan S H. Near complete violation of detailed balance in thermal radiation[J]. Physical Review B, 90, 220301(2014).

    [134] Zhao B, Shi Y, Wang J H et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field[J]. Optics Letters, 44, 4203-4206(2019).

    [135] Zhao B, Guo C, Garcia C A C et al. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals[J]. Nano Letters, 20, 1923-1927(2020).

    [136] Park Y, Asadchy V S, Zhao B et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures[J]. ACS Photonics, 8, 2417-2424(2021).

    [137] Hadad Y, Soric J C, Alu A. Breaking temporal symmetries for emission and absorption[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 3471-3475(2016).

    [138] Ghanekar A, Wang J H, Fan S H et al. Violation of Kirchhoff’s law of thermal radiation with space-time modulated grating[J]. ACS Photonics, 9, 1157-1164(2022).

    [139] Ghanekar A, Wang J H, Guo C et al. Nonreciprocal thermal emission using spatiotemporal modulation of graphene[J]. ACS Photonics, 10, 170-178(2023).

    [140] Shayegan K J, Biswas S, Zhao B et al. Direct observation of the violation of Kirchhoff’s law of thermal radiation[J]. Nature Photonics, 17, 891-896(2023).

    [141] Khandekar C, Messina R, Rodriguez A W. Near-field refrigeration and tunable heat exchange through four-wave mixing[J]. AIP Advances, 8, 055029(2018).

    [142] Khandekar C, Yang L P, Rodriguez A W et al. Quantum nonlinear mixing of thermal photons to surpass the blackbody limit[J]. Optics Express, 28, 2045-2059(2020).

    [143] Cuevas J C, García-Vidal F J. Radiative heat transfer[J]. ACS Photonics, 5, 3896-3915(2018).

    [144] Xiao Y Z, Sheldon M, Kats M A. Super-Planckian emission cannot really be ‘thermal’[J]. Nature Photonics, 16, 397-401(2022).

    [145] Rodriguez A W, Ilic O, Bermel P et al. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials[J]. Physical Review Letters, 107, 114302(2011).

    [146] Guérout R, Lussange J, Rosa F S S et al. Enhanced radiative heat transfer between nanostructured gold plates[J]. Physical Review B, 85, 180301(2012).

    [147] Dai J, Dyakov S A, Yan M. Enhanced near-field radiative heat transfer between corrugated metal plates: role of spoof surface plasmon polaritons[J]. Physical Review B, 92, 035419(2015).

    [148] Ghanekar A, Ji J, Zheng Y. High-rectification near-field thermal diode using phase change periodic nanostructure[J]. Applied Physics Letters, 109, 123106(2016).

    [149] Yang Y, Wang L P. Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps[J]. Physical Review Letters, 117, 044301(2016).

    [150] Messina R, Noto A, Guizal B et al. Radiative heat transfer between metallic gratings using Fourier modal method with adaptive spatial resolution[J]. Physical Review B, 95, 125404(2017).

    [151] Liu X L, Zhang Z M. Near-field thermal radiation between metasurfaces[J]. ACS Photonics, 2, 1320-1326(2015).

    [152] Fernández-Hurtado V, García-Vidal F J, Fan S H et al. Enhancing near-field radiative heat transfer with Si-based metasurfaces[J]. Physical Review Letters, 118, 203901(2017).

    [153] Gomez-Diaz J S, Alù A. Flatland optics with hyperbolic metasurfaces[J]. ACS Photonics, 3, 2211-2224(2016).

    [154] Zhao B, Guizal B, Zhang Z M et al. Near-field heat transfer between graphene/hBN multilayers[J]. Physical Review B, 95, 245437(2017).

    [155] Shi K Z, Bao F L, He S L. Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures[J]. ACS Photonics, 4, 971-978(2017).

    [156] Zhang Y, Antezza M, Yi H L et al. Metasurface-mediated anisotropic radiative heat transfer between nanoparticles[J]. Physical Review B, 100, 085426(2019).

    [157] Lim M, Lee S S, Lee B J. Near-field thermal radiation between graphene-covered doped silicon plates[J]. Optics Express, 21, 22173-22185(2013).

    [158] Ilic O, Thomas N H, Christensen T et al. Active radiative thermal switching with graphene plasmon resonators[J]. ACS Nano, 12, 2474-2481(2018).

    [159] Tang G M, Zhang L, Zhang Y et al. Near-field energy transfer between graphene and magneto-optic media[J]. Physical Review Letters, 127, 247401(2021).

    [160] Kajihara Y, Kosaka K, Komiyama S. Thermally excited near-field radiation and far-field interference[J]. Optics Express, 19, 7695-7704(2011).

    [161] Zare S, Pouria R, Chow P K et al. Probing near-field thermal emission of localized surface phonons from silicon carbide nanopillars[J]. ACS Photonics, 10, 401-411(2023).

    [162] St-Gelais R, Zhu L X, Fan S H et al. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime[J]. Nature Nanotechnology, 11, 515-519(2016).

    [163] Yang J, Du W, Su Y S et al. Observing of the super-Planckian near-field thermal radiation between graphene sheets[J]. Nature Communications, 9, 4033(2018).

    [164] Bhatt G R, Zhao B, Roberts S et al. Integrated near-field thermo-photovoltaics for heat recycling[J]. Nature Communications, 11, 2545(2020).

    [165] Rephaeli E, Raman A, Fan S H. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 13, 1457-1461(2013).

    [166] Raman A P, Abou Anoma M, Zhu L X et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 515, 540-544(2014).

    [167] Zhai Y, Ma Y G, David S N et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 355, 1062-1066(2017).

    [168] Sun K, Riedel C A, Wang Y D et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft[J]. ACS Photonics, 5, 495-501(2018).

    [169] Salary M M, Mosallaei H. Photonic metasurfaces as relativistic light sails for Doppler-broadened stable beam-riding and radiative cooling[J]. Laser & Photonics Reviews, 14, 1900311(2020).

    [170] Li D, Liu X, Li W et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 16, 153-158(2021).

    [171] Zeng S N, Pian S J, Su M Y et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 373, 692-696(2021).

    [172] Lin C J, Li Y, Chi C et al. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates[J]. Advanced Materials, 34, 2109350(2022).

    [173] Zhu Y N, Zhou Y W, Qin B et al. Night-time radiative warming using the atmosphere[J]. Light: Science & Applications, 12, 268(2023).

    [174] Chang C C, Kort-Kamp W J M, Nogan J et al. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting[J]. Nano Letters, 18, 7665-7673(2018).

    [175] Rephaeli E, Fan S H. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit[J]. Optics Express, 17, 15145-15159(2009).

    [176] Nguyen-Huu N, Chen Y B, Lo Y L. Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating[J]. Optics Express, 20, 5882-5890(2012).

    [177] Wang L P, Zhang Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics[J]. Applied Physics Letters, 100, 063902(2012).

    [178] Wu C H, Neuner B, John J et al. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems[J]. Journal of Optics, 14, 024005(2012).

    [179] Zhao B, Wang L P, Shuai Y et al. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure[J]. International Journal of Heat and Mass Transfer, 67, 637-645(2013).

    [180] Shemelya C, DeMeo D, Latham N P et al. Stable high temperature metamaterial emitters for thermophotovoltaic applications[J]. Applied Physics Letters, 104, 201113(2014).

    [181] Wang H C, Chen Q, Wen L et al. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application[J]. Photonics Research, 3, 329-334(2015).

    [182] Coppens Z J, Kravchenko I I, Valentine J G. Lithography-free large-area metamaterials for stable thermophotovoltaic energy conversion[J]. Advanced Optical Materials, 4, 671-676(2016).

    [183] Wang H, Chang J Y, Yang Y et al. Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters[J]. International Journal of Heat and Mass Transfer, 98, 788-798(2016).

    [184] Woolf D N, Kadlec E A, Bethke D et al. High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter[J]. Optica, 5, 213-218(2018).

    [185] Abbas M A, Kim J, Rana A S et al. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems[J]. Nanoscale, 14, 6425-6436(2022).

    [186] Zhang S Y, Zhong F, Lin Z H et al. Spectrum-selective high-temperature tolerant thermal emitter by dual-coherence enhanced absorption for solar thermophotovoltaics[J]. Advanced Optical Materials, 12, 2301726(2024).

    [187] Miyazaki H T, Kasaya T, Iwanaga M et al. Dual-band infrared metasurface thermal emitter for CO2 sensing[J]. Applied Physics Letters, 105, 121107(2014).

    [188] Pusch A, de Luca A, Oh S S et al. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices[J]. Scientific Reports, 5, 17451(2015).

    [189] Lochbaum A, Dorodnyy A, Koch U et al. Compact mid-infrared gas sensing enabled by an all-metamaterial design[J]. Nano Letters, 20, 4169-4176(2020).

    [190] Li N X, Yuan H Y, Xu L F et al. Tailorable infrared emission of microelectromechanical system-based thermal emitters with NiO films for gas sensing[J]. Optics Express, 29, 19084-19093(2021).

    [191] Livingood A, Nolen J R, Folland T G et al. Filterless nondispersive infrared sensing using narrowband infrared emitting metamaterials[J]. ACS Photonics, 8, 472-480(2021).

    [192] Barho F B, Gonzalez-Posada F, Bomers M et al. Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces[J]. ACS Photonics, 6, 1506-1514(2019).

    [193] Nakagawa K, Shimura Y, Fukazawa Y et al. Microemitter-based IR spectroscopy and imaging with multilayer graphene thermal emission[J]. Nano Letters, 22, 3236-3244(2022).

    [194] Salihoglu O, Uzlu H B, Yakar O et al. Graphene-based adaptive thermal camouflage[J]. Nano Letters, 18, 4541-4548(2018).

    [195] Xie X, Li X, Pu M B et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Advanced Functional Materials, 28, 1706673(2018).

    [196] Lee N, Kim T, Lim J S et al. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation[J]. ACS Applied Materials & Interfaces, 11, 21250-21257(2019).

    [197] Liu Y D, Song J L, Zhao W X et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface[J]. Nanophotonics, 9, 855-863(2020).

    [198] Song J L, Huang S Y, Ma Y P et al. Radiative metasurface for thermal camouflage, illusion and messaging[J]. Optics Express, 28, 875-885(2020).

    [199] Wang J, Yang F B, Xu L J et al. Omnithermal restructurable metasurfaces for both infrared-light illusion and visible-light similarity[J]. Physical Review Applied, 14, 014008(2020).

    [200] Zhu H Z, Li Q, Tao C N et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communications, 12, 1805(2021).

    [201] Kim J, Park C, Hahn J W. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range[J]. Advanced Optical Materials, 10, 2101930(2022).

    [202] Wu Y J, Luo J, Pu M B et al. Optically transparent infrared selective emitter for visible-infrared compatible camouflage[J]. Optics Express, 30, 17259-17269(2022).

    [203] Zhang J G, Wen Z J, Zhou Z J et al. Long-wavelength infrared selective emitter for thermal infrared camouflage under a hot environment[J]. Optics Express, 30, 24132-24144(2022).

    [204] Lee N, Lim J S, Chang I et al. Flexible assembled metamaterials for infrared and microwave camouflage[J]. Advanced Optical Materials, 10, 2200448(2022).

    [205] Shim H B, Han K, Song J et al. A multispectral single-layer frequency selective surface absorber for infrared and millimeter wave selective bi-stealth[J]. Advanced Optical Materials, 10, 2102107(2022).

    [206] Qin B, Zhu Y N, Zhou Y W et al. Whole-infrared-band camouflage with dual-band radiative heat dissipation[J]. Light: Science & Applications, 12, 246(2023).

    [207] Chu Q Q, Zhang F Y, Zhang Y et al. Integrated thermal emission microchip based on meta-cavity array[J]. Nanophotonics, 11, 4263-4271(2022).

    [208] Chu Q Q, Zhang F Y, Zhang Y et al. Indirect measurement of infrared absorption spectrum through thermal emission of meta-cavity array[J]. Optics Express, 31, 39832-39840(2023).

    [209] Zhang F Y, Chu Q Q, Wang Q et al. Multiple symmetry protected BIC lines in two dimensional synthetic parameter space[J]. Nanophotonics, 12, 2405-2413(2023).

    [210] Li Q, Ying Y B, Qiu W. Research progress of thermal emission direction control[J]. Acta Optica Sinica, 44, 1900001(2024).

    [211] Sun Y W, He N, Zhang Z et al. Absorbing metasurfaces and their applications in the mid-infrared band[J]. Acta Optica Sinica, 42, 1704001(2022).

    Xiaohe Shang, Fan Zhong, Jinguang Shang, Ye Zhang, Yanling Xiao, Shining Zhu, Hui Liu. Thermal Emission Manipulation and Its Infrared Applications Based on Metasurfaces (Invited)[J]. Acta Optica Sinica, 2024, 44(19): 1925001
    Download Citation