• Journal of Innovative Optical Health Sciences
  • Vol. 13, Issue 2, 2050007 (2020)
Joanne Li1、2, Madison N. Wilson2、3, Andrew J. Bower2、3, Marina Marjanovic1、2, Eric J. Chaney2, Ronit Barkalifa2, and Stephen A. Boppart1、2、3、4、*
Author Affiliations
  • 1Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
  • 2Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
  • 3Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
  • 4Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
  • show less
    DOI: 10.1142/s1793545820500078 Cite this Article
    Joanne Li, Madison N. Wilson, Andrew J. Bower, Marina Marjanovic, Eric J. Chaney, Ronit Barkalifa, Stephen A. Boppart. Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin[J]. Journal of Innovative Optical Health Sciences, 2020, 13(2): 2050007 Copy Citation Text show less
    References

    [1] M. D. Cahalan, I. Parker, "Choreography of cell motility and interaction dynamics imaged by twophoton microscopy in lymphoid organs," Annu. Rev. Immunol. 26, 585–626 (2008).

    [2] A. Nimmerjahn, F. Kirchhoff, F. Helmchen, "Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo," Science 308, 1314–1318 (2005).

    [3] A. E. Carpenter et al., "CellProfiler: Image analysis software for identifying and quantifying cell phenotypes," Genome Biol. 7, R100 (2006).

    [4] E. Meijering, O. Dzyubachyk, I. Smal, Methods for cell and particle tracking, Methods in Enzymology, P. M. Conn, Ed., Vol. 504, pp. 183–200, Academic Press (2012).

    [5] D. R. Soil, International Review of Cytology, K. W. Jeon, J. Jarvik, Eds., Vol. 163, pp. 43–104, Academic Press (1995).

    [6] G. Rabut, J. Ellenberg, "Automatic real-time threedimensional cell tracking by °uorescence microscopy," J. Microsc. 216, 131–137 (2004).

    [7] M. Machacek, G. Danuser, "Morphodynamic pro-filing of protrusion phenotypes," Biophys. J. 90, 1439–1452 (2006).

    [8] C. Bakal, J. Aach, G. Church, N. Perrimon, "Quantitative morphological signatures define local signaling networks regulating cell morphology," Science 316, 1753–1756 (2007).

    [9] E. Alizadeh, S. M. Lyons, J. M. Castle, A. Prasad, "Measuring systematic changes in invasive cancer cell shape using Zernike moments," Integr. Biol. 8, 1183–1193 (2016).

    [10] M. V. Boland, R. F. Murphy, "A neural network classifier capable of recognizing the patterns of all major subcellular structures in °uorescence microscope images of HeLa cells," Bioinformatics 17, 1213–1223 (2001).

    [11] L. M. Thurston, P. F. Watson, A. J. Mileham, W. V. Holt, "Morphologically distinct sperm subpopulations defined by fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation," J. Androl. 22, 382–394 (2001).

    [12] P. J. Campagnola, L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356–1360 (2003).

    [13] J. S. Bredfeldt, Y. Liu, M. W. Conklin, P. J. Keely, T. R. Mackie, K. W. Eliceiri, "Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer," J. Biomed. Opt. 19, 1–11 (2014).

    [14] A. J. Bower, Z. Arp, Y. Zhao, J. Li, E. J. Chaney, M. Marjanovic, A. Hughes-Earle, S. A. Boppart, "Longitudinal in vivo tracking of adverse effects following topical steroid treatment," Exp. Dermatol. 25, 362–367 (2016).

    [15] S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, S. Xu, "Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy," J. Biomed. Opt. 16, 1–4 (2011).

    [16] P. D. Dale, J. A. Sherratt, P. K. Maini, "A mathematical model for collagen fibre formation during foetal and adult dermal wound healing," Proc. Royal Soc. B: Biol. Sci. 263, 653–660 (1996).

    [17] J. S. Bredfeldt et al., "Automated quantification of aligned collagen for human breast carcinoma prognosis," J. Pathol. Inform. 5, 28 (2014).

    [18] A. Keikhosravi, J. S. Bredfeldt, A. K. Sagar, K. W. Eliceiri, Methods in Cell Biology, J. C. Waters, T. Wittman, Eds., Vol. 123, pp. 531–546, Academic Press (2014).

    [19] X. Chen, X. Zhou, S. T. C. Wong, "Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy," IEEE Trans. Biomed. Eng. 53, 762–766 (2006).

    [20] D. G. Spiller, C. D. Wood, D. A. Rand, M. R. H. White, "Measurement of single-cell dynamics," Nature 465, 736–745 (2010).

    [21] M. Esseling, B. Kemper, M. Antkowiak, D. J. Stevenson, L. Chaudet, M. A. Neil, P. W. French, G. von Bally, K. Dholakia, C. Denz, "Multimodal biophotonic workstation for live cell analysis," J. Biophoton. 5, 9–13 (2012).

    [22] B. W. Graf, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, S. A. Boppart, "Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin," Technology 1, 8–19 (2013).

    [23] M. C. Skala, K. M. Riching, A. Gendron- Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, "In vivo multiphoton microscopy of NADH and FAD redox states, °uorescence lifetimes, and cellular morphology in precancerous epithelia," Proc. Natl. Acad. Sci. 104, 19494–19499 (2007).

    [24] A. J. Bower, J. Li, E. J. Chaney, M. Marjanovic, D. R. Spillman, S. A. Boppart, "High-speed imaging of transient metabolic dynamics using two-photon °uorescence lifetime imaging microscopy," Optica 5, 1290–1296 (2018).

    [25] B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, S. A. Boppart, "In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration," J. Biophoton. 7, 96–102 (2014).

    [26] Y. Zhao, A. J. Bower, B. W. Graf, M. D. Boppart, S. A. Boppart, Imaging and Tracking Stem Cells: Methods and Protocols, K. Turksen, Ed., pp. 57–76, Humana Press, Totowa, NJ (2013).

    [27] A. J. Bower, J. E. Sorrells, J. Li, M. Marjanovic, R. Barkalifa, S. A. Boppart, "Tracking metabolic dynamics of apoptosis with high-speed two-photon °uorescence lifetime imaging microscopy," Biomed. Opt. Exp. 10, 6408–6421 (2019).

    [28] J. Li, A. J. Bower, V. Vainstein, Z. Gluzman- Poltorak, E. J. Chaney, M. Marjanovic, L. A. Basile, S. A. Boppart, "Effect of recombinant interleukin-12 on murine skin regeneration and cell dynamics using in vivo multimodal microscopy," Biomed. Opt. Exp. 6, 4277–4287 (2015).

    [29] A. J. Walsh, A. T. Shah, J. T. Sharick, M. C. Skala, Advanced Time-Correlated Single Photon Counting Applications, W. Becker, Ed., pp. 435–456, Springer International Publishing, Cham (2015).

    [30] J. D. Jones, H. E. Ramser, A. E. Woessner, K. P. Quinn, "In vivo multiphoton microscopy detects longitudinal metabolic changes associated with delayed skin wound healing," Commun. Biol. 1, 198 (2018).

    [31] D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, N. Ramanujam, "Metabolic mapping of MCF10A human breast cells via multiphoton °uorescence lifetime imaging of the coenzyme NADH," Cancer Res. 65, 8766–8773 (2005).

    Joanne Li, Madison N. Wilson, Andrew J. Bower, Marina Marjanovic, Eric J. Chaney, Ronit Barkalifa, Stephen A. Boppart. Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin[J]. Journal of Innovative Optical Health Sciences, 2020, 13(2): 2050007
    Download Citation