• Laser & Optoelectronics Progress
  • Vol. 60, Issue 1, 0116002 (2023)
Ming Zhu1、2、*, Qian Yang1, Bo Wang1, Yu Shi1、2, and Ding Fan1、2
Author Affiliations
  • 1State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu , China
  • 2Lanzhou University of Technology, Key Laboratory of Non-Ferrous Metal Alloys and Processing of State Education Ministry, Lanzhou 730050, Gansu , China
  • show less
    DOI: 10.3788/LOP212930 Cite this Article Set citation alerts
    Ming Zhu, Qian Yang, Bo Wang, Yu Shi, Ding Fan. Effect of Laser Parameters on Melting Behavior of Powders in Off-Axis Laser Cladding Process[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0116002 Copy Citation Text show less
    References

    [1] Zhang K Z, He C W, Lin Y Y et al. Microstructures and mechanical properties of laser cladding repaired 5A06 alloys[J]. Laser & Optoelectronics Progress, 57, 231409(2020).

    [2] Zhang J C, Shi S H, Gong Y Q et al. Research progress of laser cladding technology[J]. Surface Technology, 49, 1-11(2020).

    [3] Bai Y, Wang Z H, Zuo J J et al. Fe-based composite coating prepared by laser cladding and its heat and corrosion resistance[J]. Chinese Journal of Lasers, 47, 1002001(2020).

    [4] Liu W, Dong S, Xu B et al. Review of synchronous powder feeding technology for laser cladding[J]. Surface Technology, 8, 1227-1230(2007).

    [5] Zhang R Z, Li L J, Tang M Q et al. Research progress of laser cladding technology[J]. Heat Treatment Technology and Equipment, 38, 7-11(2017).

    [6] Huang Y L, Liu J, Ma N H et al. Three-dimensional analytical model on laser-powder interaction during laser cladding[J]. Journal of Laser Applications, 18, 42-46(2006).

    [7] Qi H, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition[J]. Journal of Applied Physics, 100, 024903(2006).

    [8] Tabernero I, Lamikiz A, Martínez S et al. Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process[J]. Journal of Materials Processing Technology, 212, 516-522(2012).

    [9] Liu S, Farahmand P, Kovacevic R. Optical monitoring of high power direct diode laser cladding[J]. Optics & Laser Technology, 64, 363-376(2014).

    [10] Gulyaev I P, Kovalev O B, Pinaev P A et al. Optical diagnostics of radiation interaction with the powder stream laterally transported during laser cladding[J]. Optics and Lasers in Engineering, 126, 105877(2020).

    [11] Tan H, Fang Y B, Zhong C L et al. Investigation of heating behavior of laser beam on powder stream in directed energy deposition[J]. Surface and Coatings Technology, 397, 126061(2020).

    [12] Yang Y C, Huang R S, Fang N W et al. Effect of the interaction between laser beam and powder particles on energy transmission in coaxial powder feeding additive manufacturing[J]. Transactions of the China Welding Institution, 41, 19-23, 98(2020).

    [13] Zhu M, Wang B, Yan B Y et al. Dynamic detection and analysis of fore-put powder melting behavior in diode laser cladding process[J]. Chinese Journal of Lasers, 48, 1402013(2021).

    [14] Xi M Z, Yu G, Zhang Y Z et al. Interaction of the laser beam and the metal powder conveyed by coaxial powder feeder[J]. Chinese Journal of Lasers, 32, 562-566(2005).

    Ming Zhu, Qian Yang, Bo Wang, Yu Shi, Ding Fan. Effect of Laser Parameters on Melting Behavior of Powders in Off-Axis Laser Cladding Process[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0116002
    Download Citation