• Photonics Research
  • Vol. 12, Issue 4, 691 (2024)
Zixin Wang1、2, Ningning Dong1、2、3、4, Yu Mao1、2, Chenduan Chen1、2, Xin Chen1、2, Chang Xu1, Zhouyuan Yan1、2, and Jun Wang1、2、3、*
Author Affiliations
  • 1Aerospace Laser Technology and Systems Department, CAS Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center for Excellence in Ultra-intense Laser Science (CEULS), State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4e-mail: n.n.dong@siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.510142 Cite this Article Set citation alerts
    Zixin Wang, Ningning Dong, Yu Mao, Chenduan Chen, Xin Chen, Chang Xu, Zhouyuan Yan, Jun Wang. Microscopic nonlinear optical activities and ultrafast carrier dynamics in layered AgInP2S6[J]. Photonics Research, 2024, 12(4): 691 Copy Citation Text show less
    References

    [1] M. Amani, C. L. Tan, G. Zhang. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 12, 7253-7263(2018).

    [2] K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 10, 216-226(2016).

    [3] M. Ye, J. J. Zha, C. L. Tan. Graphene-based mid-infrared photodetectors using metamaterials and related concepts. Appl. Phys. Rev., 8, 031303(2021).

    [4] F. C. Liu, S. J. Zheng, X. X. He. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater., 26, 1169-1177(2016).

    [5] T. J. Zhang, C. C. Zhou, J. Lin. Effects on the emission discrepancy between two-dimensional Sn-based and Pb-based perovskites. Chin. Opt. Lett., 20, 021602(2022).

    [6] G. Jang, H. Han, S. Ma. Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes. Adv. Photonics, 5, 016001(2023).

    [7] D. H. Deng, K. S. Novoselov, Q. Fu. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol., 11, 218-230(2016).

    [8] Q. Fu, X. H. Bao. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev., 46, 1842-1874(2017).

    [9] F. R. Fan, R. X. Wang, H. Zhang. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev., 50, 10983-11031(2021).

    [10] S. Das, D. Pandey, J. Thomas. The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 31, 1802722(2019).

    [11] Z. K. Liu, S. P. Lau, F. Yan. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev., 44, 5638-5679(2015).

    [12] F. Zhang, H. P. Lu, J. H. Tong. Advances in two-dimensional organic-inorganic hybrid perovskites. Energy Environ. Sci., 13, 1154-1186(2020).

    [13] F. K. Sun, B. N. Wu, S. Y. Jin. Large bandgap oscillations in two-dimensional Dion-Jacobson phase perovskites caused by coherent longitudinal acoustic phonons [Invited]. Chin. Opt. Lett., 20, 100010(2022).

    [14] C. H. Dai, Y. Q. Liu, D. C. Wei. Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev., 122, 10319-10392(2022).

    [15] X. H. Liu, T. T. Ma, N. Pinna. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater., 27, 1702168(2017).

    [16] D. Tyagi, H. D. Wang, W. C. Huang. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale, 12, 3535-3559(2020).

    [17] H. Y. Yao, Z. Q. Sun, L. J. Liang. Hybrid metasurface using graphene/graphitic carbon nitride heterojunctions for ultrasensitive terahertz biosensors with tunable energy band structure. Photonics Res., 11, 858-868(2023).

    [18] L. Banszerus, M. Schmitz, S. Engels. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv., 1, e1500222(2015).

    [19] A. A. Balandin, S. Ghosh, W. Z. Bao. Superior thermal conductivity of single-layer graphene. Nano Lett., 8, 902-907(2008).

    [20] J. S. Bunch, A. M. van der Zande, S. S. Verbridge. Electromechanical resonators from graphene sheets. Science, 315, 490-493(2007).

    [21] S. L. Zhang, Z. Yan, Y. F. Li. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect-direct band-gap transitions. Angew. Chem. Int. Ed., 54, 3112-3115(2015).

    [22] P. A. Hu, L. F. Wang, M. Yoon. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett., 13, 1649-1654(2013).

    [23] S. B. Lu, L. L. Miao, Z. N. Guo. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 23, 11183-11194(2015).

    [24] L. K. Li, Y. J. Yu, G. J. Ye. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372-377(2014).

    [25] K. F. Mak, C. Lee, J. Hone. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [26] Y. G. Li, Y. L. Li, C. M. Araujo. Single-layer MoS2 as an efficient photocatalyst. Catal. Sci. Technol., 3, 2214-2220(2013).

    [27] M. Chhowalla, H. S. Shin, G. Eda. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263-275(2013).

    [28] M. C. Friedel. Soufre et ses composés—sur une nouvelle série de sulfophosphures, les thiohypophosphates. C. R. l’Academie. Sci. Ser. III, 119, 260(1894).

    [29] L. Ferrand. Bull. Soc. Chie. Fr., 13, 115(1895).

    [30] F. M. Wang, T. A. Shifa, P. Yu. New frontiers on van der Waals layered metal phosphorous trichalcogenides. Adv. Funct. Mater., 28, 1802151(2018).

    [31] M. A. Susner, M. Chyasnavichyus, M. A. McGuire. Metal thio- and selenophosphates as multifunctional van der Waals layered materials. Adv. Mater., 29, 1602852(2017).

    [32] R. Samal, G. Sanyal, B. Chakraborty. Two-dimensional transition metal phosphorous trichalcogenides (MPX3): a review on emerging trends, current state and future perspectives. J. Mater. Chem. A, 9, 2560-2591(2021).

    [33] K. Z. Du, X. Z. Wang, Y. Liu. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano, 10, 1738-1743(2016).

    [34] X. Zhang, X. D. Zhao, D. H. Wu. MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility. Adv. Sci., 3, 1600062(2016).

    [35] F. M. Wang, T. A. Shifa, P. He. Two-dimensional metal phosphorus trisulfide nanosheet with solar hydrogen-evolving activity. Nano Energy, 40, 673-680(2017).

    [36] D. Mukherjee, P. M. Austeria, S. Sampath. Few-layer iron selenophosphate, FePSe3: efficient electrocatalyst toward water splitting and oxygen reduction reactions. ACS Appl. Energy Mater., 1, 220-231(2018).

    [37] S. Lee, K. Y. Choi, S. Lee. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. Appl. Mater., 4, 086108(2016).

    [38] R. N. Jenjeti, R. Kumar, M. P. Austeria. Field effect transistor based on layered NiPS3. Sci. Rep., 8, 8586(2018).

    [39] R. Kumar, R. N. Jenjeti, M. P. Austeria. Bulk and few-layer MnPS3: a new candidate for field effect transistors and UV photodetectors. J. Mater. Chem. C, 7, 324-329(2019).

    [40] J. W. Chu, F. M. Wang, L. Yin. High-performance ultraviolet photodetector based on a few-layered 2D NiPS3 nanosheet. Adv. Funct. Mater., 27, 1701342(2017).

    [41] Y. Gao, S. J. Lei, T. T. Kang. Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors. Nanotechnology, 29, 244001(2018).

    [42] R. Kumar, R. N. Jenjeti, S. Sampath. Bulk and few-layer 2D, p-MnPS3 for sensitive and selective moisture sensing. Adv. Mater. Interfaces, 6, 1900666(2019).

    [43] R. Kumar, R. N. Jenjeti, S. Sampath. Two-dimensional, few-layer MnPS3 for selective NO2 gas sensing under ambient conditions. ACS Sens., 5, 404-411(2020).

    [44] R. N. Jenjeti, R. Kumar, S. Sampath. Two-dimensional, few-layer NiPS3 for flexible humidity sensor with high selectivity. J. Mater. Chem. A, 7, 14545-14551(2019).

    [45] A. H. Thompson, M. S. Whittingham. Transition-metal phosphorus trisulfides as battery cathodes. Mater. Res. Bull., 12, 741-744(1977).

    [46] Q. H. Liang, Y. Zheng, C. F. Du. General and scalable solid-state synthesis of 2D MPS3 (M = Fe, Co, Ni) nanosheets and tuning their Li/Na storage properties. Small Methods, 1, 1700304(2017).

    [47] Y. H. Ding, Y. Chen, N. Xu. Facile synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett., 12, 54(2020).

    [48] T. Babuka, K. Glukhov, Y. Vysochanskii. Structural, electronic, vibration and elastic properties of the layered AgInP2S6 semiconducting crystal—DFT approach. RSC Adv., 8, 6965-6977(2018).

    [49] W. Gao, S. Li, H. C. He. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat. Commun., 12, 4747(2021).

    [50] Q. J. Ye, Z. X. Deng, H. X. Yi. Quaternary AgInP2S6: a prospective robust van der Waals semiconductor for high-speed photodetectors and their application in high-temperature-proof optical communications. Adv. Opt. Mater., 11, 2300463(2023).

    [51] X. Zhao, X. J. Yin, D. Q. Liu. Ultrafast photocarrier dynamics and nonlinear optical absorption of a layered quaternary AgInP2S6 crystal. J. Phys. Chem. C, 126, 6837-6846(2022).

    [52] P. Wan, M. M. Jiang, Y. Wei. Junction-enhanced polarization sensitivity in self-powered near-infrared photodetectors based on Sb2Se3 microbelt/n-GaN heterojunction. Adv. Opt. Mater., 11, 2202080(2023).

    [53] H. L. Zhang, Y. Li, X. Z. Hu. In-plane anisotropic 2D CrPS4 for promising polarization-sensitive photodetection. Appl. Phys. Lett., 119, 171102(2021).

    [54] A. Seidl, A. Gorling, P. Vogl. Generalized Kohn-Sham schemes and the band-gap problem. Phys. Rev. B, 53, 3764-3774(1996).

    [55] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [56] J. P. Perdew, W. Yue. Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B, 33, 8800-8802(1986).

    [57] S. Grimme. Density functional theory with London dispersion corrections. Wires Comput. Mol. Sci., 1, 211-228(2011).

    [58] Y. C. Chang, J. N. Schulman. Complex band structures of crystalline solids: an eigenvalue method. Phys. Rev. B, 25, 3975-3986(1982).

    [59] C. D. Chen, N. N. Dong, J. W. Huang. Microscopic optical nonlinearities and transient carrier dynamics in indium selenide nanosheet. Opt. Express, 30, 17967-17979(2022).

    [60] B. Gu, J. He, W. Ji. Three-photon absorption saturation in ZnO and ZnS crystals. J. Appl. Phys., 103, 073105(2008).

    [61] L. Wang, S. F. Zhang, N. McEvoy. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev., 13, 1900052(2019).

    [62] R. Li, N. N. Dong, F. Ren. Nonlinear absorption response correlated to embedded Ag nanoparticles in BGO single crystal: from two-photon to three-photon absorption. Sci. Rep., 8, 1977(2018).

    [63] R. del Coso, J. Solis. Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B, 21, 640-644(2004).

    [64] D. D. Smith, Y. Yoon, R. W. Boyd. Z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys., 86, 6200-6205(1999).

    [65] M. Sheikbahae, A. A. Said, T. H. Wei. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    [66] H. Ma, Y. A. Zhao, Y. C. Shao. Principles to tailor the saturable and reverse saturable absorption of epsilon-near-zero material. Photonics Res., 9, 678-686(2021).

    [67] Y. X. Li, N. N. Dong, S. F. Zhang. Giant two-photon absorption in monolayer MoS2. Laser Photonics Rev., 9, 427-434(2015).

    [68] K. P. Wang, J. Wang, J. T. Fan. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 7, 9260-9267(2013).

    [69] N. N. Dong, Y. X. Li, S. F. Zhang. Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory. ACS Photonics, 5, 1558-1565(2018).

    [70] X. Chen, J. W. Huang, C. D. Chen. Broadband nonlinear photoresponse and ultrafast carrier dynamics of 2D PdSe2. Adv. Opt. Mater., 10, 2101963(2022).

    [71] L. Zhang, J. M. Liu, H. Jiang. Layer-dependent photoexcited carrier dynamics of WS2 observed using single pulse pump probe method. Chin. Opt. Lett., 20, 100002(2022).

    [72] A. Trapalis, I. Farrer, K. Kennedy. Temperature dependence of the band gap of zinc nitride observed in photoluminescence measurements. Appl. Phys. Lett., 111, 122105(2017).

    [73] X. M. Wen, Y. Feng, S. J. Huang. Defect trapping states and charge carrier recombination in organic-inorganic halide perovskites. J. Mater. Chem. C, 4, 793-800(2016).

    Zixin Wang, Ningning Dong, Yu Mao, Chenduan Chen, Xin Chen, Chang Xu, Zhouyuan Yan, Jun Wang. Microscopic nonlinear optical activities and ultrafast carrier dynamics in layered AgInP2S6[J]. Photonics Research, 2024, 12(4): 691
    Download Citation