• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0700002 (2023)
Jiaqi Huo*, Yuan Hu, and Binpeng Cheng
Author Affiliations
  • School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    DOI: 10.3788/LOP213408 Cite this Article Set citation alerts
    Jiaqi Huo, Yuan Hu, Binpeng Cheng. History and Application of Diffractive Optics Technology[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700002 Copy Citation Text show less
    References

    [1] Rayleigh L. Laboratory notebook[M]. Wood R W. Physical optics, 37-38(1934).

    [2] Xu X D, Hong Y L, Fu S J et al. X ray zone plates fabrication and its application[J]. Optical Technology, 25, 22-25(1999).

    [3] Wood R W. Phase-reversal zone-plates, and diffraction-telescopes[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 511-522(1898).

    [4] Yang L L. Studies on diffraction efficiency of multilayer diffractive optical elements[D](2013).

    [5] An H C. The focusing properties of deep etching subwavelength Fresnel zone plate[D](2015).

    [6] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [7] Gabor D. Microscopy by reconstructed wave fronts: II[J]. Proceedings of the Physical Society Section B, 64, 449-469(1951).

    [8] Wang X F. History and development of holography[J]. Modern Business Trade Industry, 19, 180-182(2007).

    [9] Rogers G L. Gabor diffraction microscopy: the hologram as a generalized zone-plate[J]. Nature, 166, 237(1950).

    [10] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 52, 1123-1130(1962).

    [11] Leith E N, Upatnieks J. Wavefront reconstruction with continuous-tone objects[J]. Journal of the Optical Society of America, 53, 1377-1381(1963).

    [12] Close D H. Holographic optical elements[J]. Optical Engineering, 14, 145408(1975).

    [13] Latta J N. Computer-based analysis of holography using ray tracing[J]. Applied Optics, 10, 2698-2710(1971).

    [14] Lesem L B, Hirsch P M, Jordan J A. The kinoform: a new wavefront reconstruction device[J]. IBM Journal of Research and Development, 13, 150-155(1969).

    [15] Chen Y S, Wang Y T, Li X Y et al. A wavefront reconstructing device-kinoform[J]. Laser Journal, 6, 28-33(1979).

    [16] Jordan J A,, Hirsch P M, Lesem L B et al. Kinoform lenses[J]. Applied Optics, 9, 1883-1887(1970).

    [17] D’Auria L, Huignard J P, Roy A M et al. Photolithographic fabrication of thin film lenses[J]. Optics Communications, 5, 232-235(1972).

    [18] Sales T R, Morris G M. Diffractive-refractive behavior of kinoform lenses[J]. Applied Optics, 36, 253-257(1997).

    [19] Buralli D A, Morris G M, Rogers J R. Optical performance of holographic kinoforms[J]. Applied Optics, 28, 976-983(1989).

    [20] Swanson G J. Binary optics technology: the theory and design of multi-level diffractive optical elements[R](1989).

    [21] Swanson G J, Veldkamp W B. Binary lenses for use at 10.6 micrometers[J]. Optical Engineering, 24, 245791(1985).

    [22] Ma T. Design theory of multilayer diffractive optical element and its application in hybrid optical system[D](2006).

    [23] Gerchberg R W, Saxton W. Phase determination for image and diffraction plane pictures in the electron microscope[J]. Optik, 34, 275-284(1971).

    [24] Gerchberg R. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [25] Yang G Z, Gu B Y. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 30, 410-413(1981).

    [26] Kirkpatrick S, Gelatt C D,, Vecchi M P. Optimization by simulated annealing[J]. Science, 220, 671-680(1983).

    [27] Holland J H[M]. Adaptation in natural and artificial systems(1975).

    [28] Mahlab U, Shamir J, Caulfield H J. Genetic algorithm for optical pattern recognition[J]. Optics Letters, 16, 648-650(1991).

    [29] Yan S H[M]. Design of diffractive micro-optics(2011).

    [30] Jin G F. Theoretical model and optimization design of diffractive optical elements[C](2007).

    [31] Zaki K A E H[M]. Numerical methods for the analysis of scattering from nonplanar periodic structures(1969).

    [32] Neviere M, Petit R, Cadilhac M. About the theory of optical grating coupler-waveguide systems[J]. Optics Communications, 8, 113-117(1973).

    [33] Lichtenberg B, Gallagher N C,. Finite element approach for the numerical analysis and modeling of diffractive and scattering objects[J]. Proceedings of SPIE, 2152, 2-13(1994).

    [34] Bendickson J M, Glytsis E N, Gaylord T K et al. Modeling considerations for rigorous boundary element method analysis of diffractive optical elements[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 18, 1495-1506(2001).

    [35] Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 71, 811-818(1981).

    [36] Jiang M M, Tamir T, Zhang S Z. Modal theory of diffraction by multilayered gratings containing dielectric and metallic components[J]. Journal of the Optical Society of America A, 18, 807-820(2001).

    [37] Yee K E. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966).

    [38] Faklis D, Morris G M. Spectral properties of multiorder diffractive lenses[J]. Applied Optics, 34, 2462-2468(1995).

    [39] Sweeney D W, Sommargren G E. Harmonic diffractive lenses[J]. Applied Optics, 34, 2469-2475(1995).

    [40] Zhao L D. Studies on design theory and application of multi-layer diffractive optics[D](2019).

    [41] Arieli Y, Ozeri S, Eisenberg N et al. Design of a diffractive optical element for wide spectral bandwidth[J]. Optics Letters, 23, 823-824(1998).

    [42] Ma T, Shen Y B, Yang G G. Improving diffraction efficiency of DOE in wide waveband application by multilayer micro-structure[J]. Infrared and Laser Engineering, 37, 119-123(2008).

    [43] Ma Z B. The optical design based on double-layer binary optical elements[D](2017).

    [44] Xue C X, Cui Q F, Liu T et al. Optimal design of a multilayer diffractive optical element for dual wavebands[J]. Optics Letters, 35, 4157-4159(2010).

    [45] Xue C X, Cui Q F, Pan C Y et al. Design of multi-layer diffractive optical element with bandwidth integral average diffraction efficiency[J]. Acta Optica Sinica, 30, 3016-3020(2010).

    [46] Xue C X, Cui Q F, Yang L L et al. Design and analysis of multi-layer diffractive optical elements with cauchy dispersion formula[J]. Acta Optica Sinica, 31, 0623002(2011).

    [47] Piao M, Cui Q, Zhang B et al. Optimization method of multilayer diffractive optical elements with consideration of ambient temperature[J]. Applied Optics, 57, 8861-8869(2018).

    [48] Piao M X, Cui Q F, Zhao C Z et al. Substrate material selection method for multilayer diffractive optics in a wide environmental temperature range[J]. Applied Optics, 56, 2826-2833(2017).

    [49] Piao M X, Cui Q F, Zhu H et al. Diffraction efficiency change of multilayer diffractive optics with environmental temperature[J]. Journal of Optics, 16, 035707(2014).

    [50] Hu Y, Cui Q F, Zhao L D et al. PSF model for diffractive optical elements with improved imaging performance in dual-waveband infrared systems[J]. Optics Express, 26, 26845-26857(2018).

    [51] Zhang B, Cui Q F, Piao M X et al. Substrate material selection method for dual-band multilayer diffractive optical elements and its application in the zoom system[J]. Acta Optica Sinica, 40, 0605001(2020).

    [52] Zhang B, Cui Q F, Piao M X. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation[J]. Optics Communications, 415, 156-163(2018).

    [53] Mao S, Cui Q F. Effect on polychromatic integral diffraction efficiency for two-layer diffractive optics[J]. Acta Optica Sinica, 36, 0105001(2016).

    [54] Yang L L. Optimal design of the microstructure height for double-layer diffractive optical elements[J]. Infrared, 40, 11-15(2019).

    [55] Gao L, Xue C X, Yang H F et al. Effect of decenter errors on diffraction efficiency of multilayer diffractive optical elements in long infrared waveband[J]. Acta Optica Sinica, 35, 0623004(2015).

    [56] Yang L L, Liu C L, Lu F L et al. Tilt error based on comprehensive bandwidth integral average diffraction efficiency[J]. Acta Optica Sinica, 40, 0805001(2020).

    [57] Mao S, Zhao L D, Zhao J L. Integral diffraction efficiency model for multilayer diffractive optical elements with wide angles of incidence in case of polychromatic light[J]. Optics Express, 27, 21497-21507(2019).

    [58] Kipfer P, Collischon M, Haidner H et al. Infrared optical components based on a microrelief structure[J]. Optical Engineering, 33, 79-84(1994).

    [59] Chen F T, Craighead H G. Diffractive lens fabricated with mostly zeroth-order gratings[J]. Optics Letters, 21, 177-179(1996).

    [60] Lalanne P, Astilean S, Chavel P et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff[J]. Journal of the Optical Society of America A, 16, 1143-1156(1999).

    [61] Mait J N, Scherer A, Dial O et al. Diffractive lens fabricated with binary features less than 60 nm[J]. Optics Letters, 25, 381-383(2000).

    [62] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [63] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [64] Zhang P F. Study on mid-infrared planar superlens and its optical manipulation characteristics[D](2019).

    [65] Huang Z Y. Research on imaging metalens with wide bandwidth and large viewing field[D](2021).

    [66] Cheng Q. Design and performance analysis of infrared metalens[D](2020).

    [67] Sha C C. Design of broadband achromatic metalens in the mid-infrared region based on the principle of phase manipulation with nanostructures[D](2020).

    [68] Cox J A, Fritz T A, Werner T R. Application and demonstration of diffractive optics for head-mounted displays[J]. Proceedings of SPIE, 2218, 32-40(1994).

    [69] Lu H P, Liu W Q, Kang Y S et al. Design of compact optical system in panoramic three-dimensional head mounted display[J]. Acta Optica Sinica, 32, 0522002(2012).

    [70] Zhao S L, Wang Z Q. Design of an ultralight and compact hybrid refractive-diffractive projection lens of head-mounted projective displays[J]. Acta Optica Sinica, 26, 249-253(2006).

    [71] Lou D. Research on the design theory and application of harmonic diffraction optics[D](2008).

    [72] Zhao Y H, Fan C J, Ying C F et al. Hybrid diffractive-refractive 60° field of view eyepiece with three-layer diffractive optical element[J]. Acta Photonica Sinica, 42, 266-270(2013).

    [73] Yang X J, Wang Z Q, Fu R L. Hybrid diffractive-refractive 67°-diagonal field of view optical see-through head-mounted display[J]. Optik, 116, 351-355(2005).

    [74] Bao Q Y. Research on design of optical system of holographic helmet-mounted display[D](2008).

    [75] Sun Q, Wang Z Y, Li F Y et al. Design of infrared dual-band thermal differential reduction system with harmonic diffraction elements[J]. Chinese Science Bulletin, 48, 557-561(2003).

    [76] Xu Y X. Infrared optical system with refractive diffractive hybrid athermalization design and evaluate[J]. Infrared and Laser Engineering, 37, 560-564(2008).

    [77] Wood A P. Design of infrared hybrid refractive-diffractive lenses[J]. Applied Optics, 31, 2253-2258(1992).

    [78] Behrmann G P, Bowen J P. Influence of temperature on diffractive lens performance[J]. Applied Optics, 32, 2483-2489(1993).

    [79] Fan C J, Wang Z Q, Wu H B et al. The design of infrared dual-band double-layer harmonic diffractive optical system[J]. Acta Optica Sinica, 27, 1266-1270(2007).

    [80] Zhang X T, An Z Y. Design of infrared athermal optical system for dual-band with double-layer harmonic diffraction element[J]. Acta Optica Sinica, 33, 282-286(2013).

    [81] Mao W F, Zhang X, Qu H M et al. Broad dual-band kinoform infrared double-layer diffractive optical system design[J]. Acta Optica Sinica, 34, 1022002(2014).

    [82] Zhao X, Guo Y, Zhang P et al. Design of infrared dual-band optical system with double-layer diffraction optical element[J]. Electronics Optics & Control, 24, 85-89(2017).

    [83] Yang L L, Zhao Y B, Chen F et al. Design of athermal MWIR/LWIR optical system with double-layer diffractive optical elements[J]. Journal of Applied Optics, 40, 756-762(2019).

    [84] Yu Y H. Design of solar blind ultraviolet missile warning optical system[D](2012).

    [85] Yu Y H, Wang W S. Optical design of diffractive refractive hybrid ultraviolet warning systems[J]. Laser Technology, 36, 421-423, 427(2012).

    [86] Song S S, Lin L N, Wang W S. Design of solar blind ultraviolet warning optical system[J]. Laser & Optoelectronics Progress, 50, 102203(2013).

    [87] Sun Y. Design of solar blind ultraviolet warning optical system[D](2016).

    [88] Fan W W. Design of a large field solar-blind ultraviolet warning optical system[D](2018).

    [89] Zhou C X, Lin D J, Du C L et al. Optical design of hybrid reflective/diffractive binary optics Schmidt telescope[J]. Acta Optica Sinica, 18, 627-630(1998).

    [90] Xu Y, Yan S H, Zhou C L et al. Design of hybrid reflective-diffractive telescope with very large aperture and broad bandwidth[J]. Semiconductor Optoelectronics, 28, 579-582(2007).

    [91] Zhu W, Xu Y, Yan S H. Design of broad bandwidth reflective-diffractive hybrid telescope with super large aperture[J]. Journal of Applied Optics, 29, 40-44(2008).

    [92] Li Y. Design of refractive/diffractive and reflective/diffractive astronomical telescopes[D](2012).

    [93] Liu F, Sai J G, Zhao J K et al. Athermalization design of 8-12 μm infrared hybrid refractive/reflective/diffractive lenses for tank scan[J]. Infrared and Laser Engineering, 41, 2459-2462(2012).

    [94] Zhang H L, Liu H, Lizana A et al. Methods for the performance enhancement and the error characterization of large diameter ground-based diffractive telescopes[J]. Optics Express, 25, 26662-26677(2017).

    [95] Yue J Y. Performance test of compound eye diffraction telescope system[D](2010).

    [96] Yue J Y, Ju S G, Yue M et al. Optical characteristic analysis of the diffractive compound telescope[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 35, 40-44(2012).

    [97] Zhang S Q, Zhou L Y, Xue C X et al. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses[J]. Applied Optics, 56, 7442-7449(2017).

    [98] Liu J, Zhang Z Q. Insect-compound-eye-simulated big view filed monocular 3D head-wearing display system and display method[P].

    [100] Xie N. Research on aspheric surface testing technology based on computer generated hologram(CGH)[D](2015).

    [101] Zhang H D, Wang X K, Xue D L et al. Surface testing method for ultra-large convex aspheric surfaces[J]. Chinese Optics, 12, 1147-1154(2019).

    [102] Wang F P, Li X N, Xu C et al. Optical testing path design for LOT aspheric segmented mirrors with reflective-diffractive compensation[J]. Chinese Optics, 14, 1184-1193(2021).

    [103] Mínguez-Vega G, Mendoza-Yero O, Lancis J et al. Diffractive optics for quasi-direct space-to-time pulse shaping[J]. Optics Express, 16, 16993-16998(2008).

    [104] Sun Y B. The design and experimental research on laser backlight used for LCD flat panel display[D](2013).

    [105] Liu X. Research on diffractive optical element applied to direct laser backlight[D](2020).

    [106] Bouzid O, Haddadi S, Fromager M et al. Focusing anomalies with binary diffractive optical elements[J]. Applied Optics, 56, 9735-9741(2017).

    [107] Liu Z X. Design of direct-lit laser backlight unit[D](2019).

    [108] Peng Y F, Fu Q, Amata H et al. Computational imaging using lightweight diffractive-refractive optics[J]. Optics Express, 23, 31393-31407(2015).

    [109] Peng Y F, Fu Q, Heide F et al. The diffractive achromat full spectrum computational imaging with diffractive optics[J]. ACM Transactions on Graphics, 35, 31(2016).

    [110] Yang J J. Research on image restoration in diffraction telescope imaging[D](2020).

    [111] Yang J J, Wang S, Wen L H et al. Experimental study on imaging and image deconvolution of a diffractive telescope system[J]. Applied Optics, 58, 9059-9068(2019).

    [112] Yang J J, Wang S, Wen L H et al. Faint-object imaging of diffractive telescopes based on image restoration[J]. Acta Optica Sinica, 40, 1411005(2020).

    [113] Dun X, Ikoma H, Wetzstein G et al. Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging[J]. Optica, 7, 913-922(2020).

    [114] Hu Y. Research on wide waveband optical system for diffractive computational imaging system[D](2021).

    [115] Jin X, Wang M, Zhou T F et al. GaN based metalens for micro imaging[J]. Optics and Precision Engineering, 26, 2917-2922(2018).

    [116] Zhang W J, Guo X Q. A super-resolution focusing system using metalens[P].

    [117] Qiu G R, Wang K, Zhao F. Design and simulation of lightweight infrared imaging guidance lens[J]. Flight Control & Detection, 4, 33-37(2021).

    [118] Gao X, Li C, Kan J Y et al. Optimization of diamond turning process for CaF2 diffractive optical elements[J]. Acta Optica Sinica, 41, 2205001(2021).

    Jiaqi Huo, Yuan Hu, Binpeng Cheng. History and Application of Diffractive Optics Technology[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700002
    Download Citation