• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20210551 (2021)
Zhuang Liu1、2, Qidong Wang2, Haodong Shi1, Chao Wang1, and Huan Qin3
Author Affiliations
  • 1Institute of Space Photo-electronics Technology, Changchun University of Science and Technology, Changchun 130022, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 3College of Optoelectronics Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    DOI: 10.3788/IRLA20210551 Cite this Article
    Zhuang Liu, Qidong Wang, Haodong Shi, Chao Wang, Huan Qin. Design of transceiver separation structure for orthogonal cascaded liquid crystal polarization gratings[J]. Infrared and Laser Engineering, 2021, 50(11): 20210551 Copy Citation Text show less
    Structure of LCPG
    Fig. 1. Structure of LCPG
    Diffraction properties of passive LCPG: (a) Incident light is right-handed circular polarization; (b) Incident light is left-handed circular polarization
    Fig. 2. Diffraction properties of passive LCPG: (a) Incident light is right-handed circular polarization; (b) Incident light is left-handed circular polarization
    Passive LCPG layer with two LC-AHWPs and two LCPGs
    Fig. 3. Passive LCPG layer with two LC-AHWPs and two LCPGs
    Beam transceiver separation structure using OC-LCPGS
    Fig. 4. Beam transceiver separation structure using OC-LCPGS
    Experimental diagram of OC-LCPGs receiving and transmitting separation structure verification
    Fig. 5. Experimental diagram of OC-LCPGs receiving and transmitting separation structure verification
    Diffraction efficiency of different LCPG at different angles
    Fig. 6. Diffraction efficiency of different LCPG at different angles
    Diffraction efficiency of LCPG with mirror symmetry at different angles
    Fig. 7. Diffraction efficiency of LCPG with mirror symmetry at different angles
    Modulation angle/(°)Polarization state of incident lightPhase delay of AHWP1Polarization state after AHWP1Polarization state after LCPG1Phase delay of AHWP2Polarization state after AHWP2Polarization state after LCPG2
    2θRCPL0RCPLLCPLπRCPLLCPL
    00RCPLLCPL0LCPLRCPL
    −2θπLCPLRCPLπLCPLRCPL
    2θLCPLπRCPLLCPLπRCPLLCPL
    00LCPLRCPL0RCPLLCPL
    −2θ0LCPLRCPLπLCPLRCPL
    Table 1. Control coefficient and polarization state change at different angles
    Modulation angle/(°)Polarization state before LCPG2Polarization state before AHWP2Phase delay of AHWP2Polarization state before LCPG1Polarization state before AHWP1Phase delay of AHWP1Polarization state before AHWP1
    2θRCPLLCPLπRCPLLCPL0LCPL
    0LCPLRCPL0RCPLLCPL0LCPL
    −2θLCPLRCPLπLCPLRCPLπLCPL
    2θRCPLLCPLπRCPLLCPLπRCPL
    0RCPLLCPL0LCPLRCPL0RCPL
    −2θLCPLRCPLπLCPLRCPL0RCPL
    Table 2. Control coefficient and polarization state change at different angles reverse light path
    Realization angle0°(MD 1.25° layer)−1.25°(SD 1.25° layer)
    Wave plate serial number0.625°0.625°0.625°0.625°
    Control coefficient0011
    Realization angle2.5°(MD 2.5° layer)2.5°(SD 2.5° layer)
    Wave plate serial number1.25°1.25°1.25°1.25°
    Control coefficient0100
    Realization angle0°(MD 5.0° layer)−5°(SD 5.0° layer)
    Wave plate serial number2.5°2.5°2.5°2.5°
    Control coefficient0001
    Realization angle0°(MD 10.0° layer)−10°(SD 10.0° layer)
    Wave plate serial number5.0°5.0°5.0°5.0°
    Control coefficient0011
    Realization angle20°(MD 20.0° layer)0°(SD 20.0° layer)
    Wave plate serial number10.0°10.0°10.0°10.0°
    Control coefficient0100
    Table 3. Control parameters of AHWP in each layer
    LayerMD 1.25° layer SD 1.25° layer MD 2.5° layer SD 2.5° layer MD 5.0° layer SD 5.0° layer MD 10.0° layer SD 10.0° layer MD 20.0° layer SD 20.0° layer
    Realization angle/(°)0−1.252.52.50−50−10200
    Polarization state after layerRCPLRCPLLCPLLCPLLCPLRCPLRCPLRCPLLCPLLCPL
    Table 4. Polarization states before and after each element of OC-LCPGS
    LayerSD 20.0° layer MD 20.0° layer SD 10.0° layer MD 10.0° layer SD 5.0° layer MD 5.0° layer SD 2.5° layer MD 2.5° layer SD 1.25° layer MD 1.25° layer
    Realization angle/(°)0−2010050−2.5−2.51.250
    Polarization state after layerLCPLRCPLRCPLRCPLRCPLLCPLLCPLLCPLRCPLLCPL
    Table 5. Polarization states before and after each element of OC-LCPGS under the condition of reverse incidence
    ComponentParameterValue
    Laser 1Wavelength/nm630
    Optical power/mW3.20
    Laser 2Wavelength/nm630
    Optical power/mW1.50
    PBSTransmittanceP:96%; S:94%
    QWPTransmittance96%
    HWPTransmittance96%
    GratingLinear density of grating 1/lp·mm−1159
    Linear density of grating 2/lp·mm−1159
    Linear density of grating 3/lp·mm−1286
    Linear density of grating 4/lp·mm−1286
    TransmittanceAs shown in Fig.6
    Thickness/mm0.45±0.04
    MaterialD263
    Table 6. Composition and index of test system
    Main order angle/(°)Transmittance of 1st measurement of S light Transmittance of 2nd measurement of S light Transmittance of 3rd measurement of S light Average transmittance of S lightAverage transmittance of P light
    081%82%81%81%<1%
    1061%61%61%61%<1%
    −1061%61%61%61%<1%
    2052%50%53%52%<1%
    −2050%50%51%50%<1%
    3041%39%40%40%<1%
    −3036%37%36%36%<1%
    Table 7. Transmittance at different modulation angles
    Main order angle/(°) Incident angle of LCPG1/(°) Incident angle of LCPG2/(°) Incident angle of LCPG3/(°) Incident angle of LCPG4/(°)
    005010
    1005100
    −100−5−100
    2005010
    −20050−10
    30051020
    −300−5−1020
    Table 8. Incident angle at different modulation angles
    Zhuang Liu, Qidong Wang, Haodong Shi, Chao Wang, Huan Qin. Design of transceiver separation structure for orthogonal cascaded liquid crystal polarization gratings[J]. Infrared and Laser Engineering, 2021, 50(11): 20210551
    Download Citation