• Matter and Radiation at Extremes
  • Vol. 7, Issue 1, 018201 (2022)
Haonan Sui1,2, Long Yu1, Wenbin Liu1, Ying Liu1..., Yangyang Cheng1 and Huiling Duan1,2,a)|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
  • 2CAPT, HEDPS and IFSA, Collaborative Innovation Center of MoE, Peking University, Beijing 100871, People’s Republic of China
  • show less
    DOI: 10.1063/5.0064557 Cite this Article
    Haonan Sui, Long Yu, Wenbin Liu, Ying Liu, Yangyang Cheng, Huiling Duan. Theoretical models of void nucleation and growth for ductile metals under dynamic loading: A review[J]. Matter and Radiation at Extremes, 2022, 7(1): 018201 Copy Citation Text show less
    References

    [1] M. A.Meyers, C.T. Aimone. Dynamic fracture (spalling) of metals. Prog. Mater. Sci., 28, 1-96(1983).

    [2] G. I.Kanel. Spall fracture: Methodological aspects, mechanisms and governing factors. Int. J. Fract., 163, 173-191(2010).

    [3] A. A.Benzerga, J.-B.Leblond, A.Needleman, V.Tvergaard. Ductile failure modeling. Int. J. Fract., 201, 29-80(2016).

    [4] A. A.Benzerga, T.Pardoen, A.Pineau. Failure of metals I: Brittle and ductile fracture. Acta Mater., 107, 424-483(2016).

    [5] Y.Cui, X.Pei, Q.Wu, S.Yao, J.Yu, Y.Yu. Revisiting the power law characteristics of the plastic shock front under shock loading. Phys. Rev. Lett., 126, 085503(2021).

    [6] A.Bakaeva, H.Duan, A.Dubinko, D.Terentyev, X.Xiao. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation. J. Mech. Phys. Solids, 85, 1-15(2015).

    [7] L.Chen, H.Chu, H.Duan, X.Xiao, L.Yu. A micromechanical model for nano-metallic-multilayers with helium irradiation. Int. J. Solids Struct., 102–103, 267-274(2016).

    [8] Y.Cui, N.Ghoniem, G.Po. Does irradiation enhance or inhibit strain bursts at the submicron scale?. Acta Mater., 132, 285-297(2017).

    [9] Y.Chen, K.Hattar, J.Li, N.Li, M.Nastasi, L.Shao, C.Sun, M. L.Taheri, H.Wang, J.Wang, K.Yu, X.Zhang. Radiation damage in nanostructured materials. Prog. Mater. Sci., 96, 217-321(2018).

    [10] H.Chu, H.Duan, D.Terentyev, X.Xiao. Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: A review and perspective. Acta Mech. Sin., 36, 397-411(2020).

    [11] L.Chen, Y.Cheng, H.Duan, W.Liu, K.Ren, H.Sui, X.Yi, L.Yu. Probabilistic and constitutive models for ductile-to-brittle transition in steels: A competition between cleavage and ductile fracture. J. Mech. Phys. Solids, 135, 103809(2020).

    [12] X.Chen, Y.Cui, P.Du, W.Feng, S.Fu, Y.Gao, Y.Hua, X.Huang, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).

    [13] Z.Cao, Y.Ding, X.Hu, T.Huang, S.Jiang, L.Kuang, S.Li, Y.Li, Z.Li, S.Liu, W.Miao, X.Peng, K.Ren, Q.Tang, F.Wang, Z.Wang, D.Yang, G.Yang, J.Yang, Z.Yang, R.Yi, B.Zhang, J.Zhang. Recent diagnostic developments at the 100 kJ-level laser facility in China. Matter Radiat. Extremes, 5, 035201(2020).

    [14] P. A.Gruber, O.Kraft, R.M?nig, D.Weygand. Plasticity in confined dimensions. Annu. Rev. Mater. Res., 40, 293-317(2010).

    [15] L.Chen, Y.Cheng, H.Duan, W.Liu, Y.Liu, X.Yi, L.Yu. Unified model for size-dependent to size-independent transition in yield strength of crystalline metallic materials. Phys. Rev. Lett., 124, 235501(2020).

    [16] T.Antoun, D.Curran, G.Kanel, S.Razorenov, L.Seaman, A.Utkin. Spall Fracture(2003).

    [17] D.Curran, L.Seaman, D. A.Shockey. Dynamic failure of solids. Phys. Rep., 147, 253-388(1987).

    [18] M. F.Ashby, R.Raj. Intergranular fracture at elevated-temperature. Acta Metall., 23, 653-666(1975).

    [19] J.Marian, M.Ortiz, C.Reina. Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals. Phys. Rev. B, 84, 104117(2011).

    [20] D. H.Kalantar, V. A.Lubarda, M. A.Meyers, B. A.Remington, M. S.Schneider. Void growth by dislocation emission. Acta Mater., 52, 1397-1408(2004).

    [21] K. T.Ramesh, J. W.Wilkerson. A closed-form criterion for dislocation emission in nano-porous materials under arbitrary thermomechanical loading. J. Mech. Phys. Solids, 86, 94-116(2016).

    [22] D. R.Curran, R.Rohde, L.Seaman, D. A.Shockey, R.Rohde, B.Butcher, J.Holland, C.Karnes and, B.Butcher, R.Rohde, B.Butcher, J.Holland, C.Karnes and, J.Holland, R.Rohde, B.Butcher, J.Holland, C.Karnes and, C.Karnes. The influence of microstructural features on dynamic fracture. Metallurgical Effects at High Strain Rates, 473-499(1973).

    [23] T.-J.Chuang, K. I.Kagawa, J. R.Rice, L. B.Sills. Non-equilibrium models for diffusive cavitation of grain interfaces. Acta Metall., 27, 265-284(1979).

    [24] M. F.Ashby. Work hardening of dispersion-hardened crystals. Philos. Mag., 14, 1157-1178(1966).

    [25] A. C.Bernstein, D. A.Dalton, T.Ditmire, N. A.Pedrazas, H. J.Quevedo, P. A.Sherek, S. P.Steuck, E. M.Taleff, D. L.Worthington. Effects of microstructure and composition on spall fracture in aluminum. Mater. Sci. Eng., A, 536, 117-123(2012).

    [26] T.Mori, T.Nakamura, K.Tanaka. Cavity formation at interface of a spherical inclusion in a plastically deformed matrix. Philos. Mag., 21, 267-279(1970).

    [27] L. M.Brown, S. H.Goods. Overview No. 1: The nucleation of cavities by plastic deformation. Acta Metall., 27, 1-15(1979).

    [28] J.Atkinson. Fatigue and the Bauschinger effect in dispersion-hardened copper single crystals(1973).

    [29] A. S.Argon, J.Im. Separation of second-phase particles in spheroidized 1045 steel, Cu-0.6pct Cr alloy, and maraging-steel in plastic straining. Metall. Trans. A, 6, 839-851(1975).

    [30] T.Inoue, S.Kinoshita. Three stages of ductile fracture process and criteria of void initiation in spheroidized and ferrite/pearlite steels. Trans. Iron Steel Inst. Jpn., 17, 523-531(1977).

    [31] N. J.Long. Deformation behaviour of particle strengthened copper alloys(1977).

    [32] L. M.Brown, W. M.Stobbs. The work-hardening of copper-silica V. Equilibrium plastic relaxation by secondary dislocations. Philos. Mag., 34, 351-372(1976).

    [33] J. Z.Cui, X. G.Jiang, L. X.Ma. A cavity nucleation model during high temperature creep deformation of metals. Acta Metall. Mater., 41, 539-542(1993).

    [34] J. C.Earthman, X.-G.Jiang, F. A.Mohamed. Cavitation and cavity-induced fracture during superplastic deformation. J. Mater. Sci., 29, 5499-5514(1994).

    [35] D.Byler, R.Dickerson, S.DiGiacomo, S.Greenfield, A.Koskelo, N.Kovvali, K.Krishnan, S. N.Luo, K. J.McClellan, D.Paisley, P.Peralta, L.Wayne. Statistics of weak grain boundaries for spall damage in polycrystalline copper. Scr. Mater., 63, 1065-1068(2010).

    [36] F.Cao, E. K.Cerreta, G. T. Gray, A. G.Perez-Bergquist, C. P.Trujillo. Orientation dependence of void formation and substructure deformation in a spalled copper bicrystal. Scr. Mater., 65, 1069-1072(2011).

    [37] C.Brandl, E. K.Cerreta, J. P.Escobedo, T. C.Germann, G. T. Gray, D. D.Koller, A.Perez-Bergquist, C. P.Trujillo. Early stage dynamic damage and the role of grain boundary type. Scr. Mater., 66, 638-641(2012).

    [38] E. K.Cerreta, S. J.Fensin, G. T. Gray, S. M.Valone. Why are some interfaces in materials stronger than others?. Sci. Rep., 4, 5461(2014).

    [39] J.Chen, A. M.Dongare, S. J.Fensin, E. N.Hahn. Understanding and predicting damage and failure at grain boundaries in BCC Ta. J. Appl. Phys., 126, 165902(2019).

    [40] J.Chen, S. J.Fensin. Associating damage nucleation and distribution with grain boundary characteristics in Ta. Scr. Mater., 187, 329-334(2020).

    [41] C.Brandl, E. K.Cerreta, J. P.Escobedo-Diaz, S. J.Fensin, T. C.Germann, G. T. Gray, S. M.Valone. Effect of loading direction on grain boundary failure under shock loading. Acta Mater., 64, 113-122(2014).

    [42] J.Belak, R. E.Rudd, E. T.Sepp?l?. Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study. Phys. Rev. B, 69, 134101(2004).

    [43] D. J.Benson, E. M.Bringa, M. A.Meyers, S.Traiviratana. Void growth in metals: Atomistic calculations. Acta Mater., 56, 3874-3886(2008).

    [44] R. E.Rudd. Void growth in bcc metals simulated with molecular dynamics using the Finnis–Sinclair potential. Philos. Mag., 89, 3133-3161(2009).

    [45] Y.Liu, L.Wang, Y.Wang, W.Xing, S.Zhang, J.Zhou. Nanovoid growth in nanocrystalline metal by dislocation shear loop emission. Mater. Sci. Eng., A, 528, 5428-5434(2011).

    [46] V. S.Krasnikov, A. E.Mayer. Plasticity driven growth of nanovoids and strength of aluminum at high rate tension: Molecular dynamics simulations and continuum modeling. Int. J. Plast., 74, 75-91(2015).

    [47] Z.Chen, Y.Cui. Material transport via the emission of shear loops during void growth: A molecular dynamics study. J. Appl. Phys., 119, 225102(2016).

    [48] S.Chandra, V. M.Chavan, S.Raghunathan, M. K.Samal. Void growth in single crystal copper-an atomistic modeling and statistical analysis study. Philos. Mag., 98, 577-604(2017).

    [49] Z.Chen, Y.Cui, Y.Ju. Fundamental insights into the mass transfer via full dislocation loops due to alternative surface cuts. Int. J. Solids Struct., 161, 42-54(2019).

    [50] A. M.Cuiti?o, M.Ortiz. Ductile fracture by vacancy condensation in f.c.c. single crystals. Acta Mater., 44, 427-436(1996).

    [51] E. M.Bringa, M. A.Meyers, S.Traiviratana. Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects. Acta Mater., 58, 4458-4477(2010).

    [52] V. A.Lubarda. Emission of dislocations from nanovoids under combined loading. Int. J. Plast., 27, 181-200(2011).

    [53] L.Chen, H.Duan, W.Liu, H.Sui, L.Yu. Three dimensional dislocation-loop emission criterion for void growth of ductile metals. Int. J. Plast., 131, 102746(2020).

    [54] D. J.Bacon, D.Hull. Introduction to Dislocations(1964).

    [55] Y.Shibutani, T.Tsuru. Initial yield process around a spherical inclusion in single-crystalline aluminium. J. Phys. D: Appl. Phys., 40, 2183-2188(2007).

    [56] V. V.Bulatov, M.Kumar, W. G.Wolfer. Shear impossibility: Comments on ‘Void growth by dislocation emission’ and ‘Void growth in metals: Atomistic calculations. Scr. Mater., 63, 144-147(2010).

    [57] B.Appolaire, A.Finel, P.-A.Geslin. Investigation of coherency loss by prismatic punching with a nonlinear elastic model. Acta Mater., 71, 80-88(2014).

    [58] J. C.Crone, J.Knap, L. B.Munday. The role of free surfaces on the formation of prismatic dislocation loops. Scr. Mater., 103, 65-68(2015).

    [59] J. C.Crone, J.Knap, L. B.Munday. Prismatic and helical dislocation loop generation from defects. Acta Mater., 103, 217-228(2016).

    [60] R.Bullough, S.Pugh, J.Willis, S.Pugh, M.Loretto, D.Norris and, M.Loretto, S.Pugh, M.Loretto, D.Norris and, D.Norris. The interaction between a void and a dislocation loop, 133-147(1971).

    [61] D. C.Ahn, R.Minich, P.Sofronis. On the micromechanics of void growth by prismatic-dislocation loop emission. J. Mech. Phys. Solids, 54, 735-755(2006).

    [62] D. C.Ahn, J.Belak, M.Kumar, R.Minich, P.Sofronis. Void growth by dislocation-loop emission. J. Appl. Phys., 101, 063514(2007).

    [63] F. A.McClintock. A criterion for ductile fracture by the growth of holes. J. Appl. Mech., 35, 363-371(1968).

    [64] J. R.Rice, D. M.Tracey. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids, 17, 201-217(1969).

    [65] J. M.Ball. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. London, Ser. A, 306, 557-611(1982).

    [66] Y.Huang, J. W.Hutchinson, V.Tvergaard. Cavitation instabilities in elastic plastic solids. J. Mech. Phys. Solids, 39, 223-241(1991).

    [67] Y.Huang, J. W.Hutchinson, V.Tvergaard. Cavitation instabilities in a power hardening elastic-plastic solid. Eur. J. Mech.: A/Solids, 11, 215-231(1992).

    [68] Z. P.Huang, J.Wang. Nonlinear mechanics of solids containing isolated voids. Appl. Mech. Rev., 59, 210-229(2006).

    [69] A. L.Gurson. Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol., 99, 2-15(1977).

    [70] A.Molinari, M.Ortiz. Effect of strain-hardening and rate sensitivity on the dynamic growth of a void in a plastic material. J. Appl. Mech., 59, 48-53(1992).

    [71] K. T.Ramesh, T. W.Wright, X. Y.Wu. The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids, 51, 1-26(2003).

    [72] K. T.Ramesh, T. W.Wright, X. Y.Wu. The effects of thermal softening and heat conduction on the dynamic growth of voids. Int. J. Solids Struct., 40, 4461-4478(2003).

    [73] K. T.Ramesh, T. W.Wright, X. Y.Wu. The coupled effects of plastic strain gradient and thermal softening on the dynamic growth of voids. J. Mech. Phys. Solids, 40, 6633-6651(2003).

    [74] A.Molinari, T. W.Wright. A physical model for nucleation and early growth of voids in ductile materials under dynamic loading. J. Mech. Phys. Solids, 53, 1476-1504(2005).

    [75] C.Czarnota, S.Mercier, A.Molinari. Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum. Int. J. Fract., 141, 177-194(2006).

    [76] C.Czarnota, N.Jacques, S.Mercier, A.Molinari. Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum. J. Mech. Phys. Solids, 56, 1624-1650(2008).

    [77] C.Denoual, F.Hild, Y.-P.Pellegrini, G.Roy, H.Trumel. On probabilistic aspects in the dynamic degradation of ductile materials. J. Mech. Phys. Solids, 57, 1980-1998(2009).

    [78] N.Jacques, S.Mercier, A.Molinari. Effects of microscale inertia on dynamic ductile crack growth. J. Mech. Phys. Solids, 60, 665-690(2012).

    [79] B.He, T.Hong, J.Hu, J.-L.Shao, F.-G.Zhang, G.-C.Zhang, H.-Q.Zhou. Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper. Chin. Phys. B, 21, 094601(2012).

    [80] K. T.Ramesh, J. W.Wilkerson. Unraveling the anomalous grain size dependence of cavitation. Phys. Rev. Lett., 117, 215503(2016).

    [81] C. A.Bronkhorst, D.Versino. A computationally efficient ductile damage model accounting for nucleation and micro-inertia at high triaxialities. Comput. Methods Appl. Mech. Eng., 333, 395-420(2018).

    [82] R. A.Austin, D. L.McDowell. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int. J. Plast., 27, 1-24(2011).

    [83] J. W.Wilkerson. On the micromechanics of void dynamics at extreme rates. Int. J. Plast., 95, 21-42(2017).

    [84] O.Cazacu, E.Charkaluk, D.Kondo, V.Monchiet. Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int. J. Plast., 24, 1158-1189(2008).

    [85] A. A.Benzerga, S. M.Keralavarma. A constitutive model for plastically anisotropic solids with non-spherical voids. J. Mech. Phys. Solids, 58, 874-901(2010).

    [86] A. A.Benzerga, S.Hoelscher, S. M.Keralavarma. Void growth and coalescence in anisotropic plastic solids. Int. J. Solids Struct., 48, 1696-1710(2011).

    [87] J.Besson, S.Bugat, S.Forest, X.Han, B.Tanguy. A yield function for single crystals containing voids. Int. J. Solids Struct., 50, 2115-2131(2013).

    [88] R.Brenner, D.Kondo, L.Morin, J.Paux. An approximate yield criterion for porous single crystals. Eur. J. Mech.: A/Solids, 51, 1-10(2015).

    [89] J.Devaux, M.Gologanu, J.-B.Leblond, G.Perrin. Recent Extensions of Gurson’s Model for Porous Ductile Metals(1997).

    [90] V.Tvergaard. On localization in ductile materials containing spherical voids. Int. J. Fract., 18, 237-252(1982).

    [91] A.Needleman, V.Tvergaard. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall., 32, 157-169(1984).

    [92] A.Needleman, V.Tvergaard. An analysis of ductile rupture in notched bars. J. Mech. Phys. Solids, 32, 461-490(1984).

    [93] I. M.Fyfe, A. M.Rajendran. Inertia effects on the ductile failure of thin rings. J. Appl. Mech., 49, 31-36(1982).

    [94] F. L.Addessio, J. N.Johnson. Tensile plasticity and ductile fracture. J. Appl. Phys., 64, 6699-6712(1988).

    [95] R. J.Pick, M. J.Worswick. Void growth and coalescence during high-velocity impact. Mech. Mater., 19, 293-309(1995).

    [96] A.Needleman, V.Tvergaard. An analysis of dynamic, ductile crack-growth in a double edge cracked specimen. Int. J. Fract., 49, 41-67(1991).

    [97] A.Needleman, V.Tvergaard. A numerical study of void distribution effects on dynamic, ductile crack-growth. Eng. Fract. Mech., 38, 157-173(1991).

    [98] A.Needleman, V.Tvergaard. Mesh effects in the analysis of dynamic ductile crack-growth. Eng. Fract. Mech., 47, 75-91(1994).

    [99] Q.Jiang, Z.-P.Wang. A yield criterion for porous ductile media at high strain rate. J. Appl. Mech., 64, 503-509(1997).

    [100] Z.-P.Wang. Void-containing nonlinear materials subject to high-rate loading. J. Appl. Phys., 81, 7213-7227(1997).

    [101] S.Mercier, A.Molinari. Micromechanical modelling of porous materials under dynamic loading. J. Mech. Phys. Solids, 49, 1497-1516(2001).

    [102] G.Roy. Vers une modélisation approfondie de l’endommagement ductile dynamique. Investigation expérimentale d’une nuance de tantale et développements théoriques(2003).

    [103] S.Eliezer, V. E.Fortov, V. V.Kostin. Spallation of metals under laser irradiation. J. Appl. Phys., 70, 4524-4531(1991).

    [104] K.Baumung, G. I.Kanel, H. U.Karow, V.Licht, S. V.Razorenov, A. V.Utkin. Spallations near the ultimate strength of solids. AIP Conf. Proc., 309, 1043-1046(1994).

    [105] A.Bogatch, V. E.Fortov, D. E.Grady, G. I.Kanel, S. V.Razorenov, A. V.Utkin. Spall fracture properties of aluminum and magnesium at high temperatures. J. Appl. Phys., 79, 8310-8317(1996).

    [106] E.Dekel, N.Eliaz, D.Eliezer, S.Eliezer, I. B.Goldberg, Z.Henis, A.Ludmirsky, E.Moshe, M.Werdiger. An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107 s−1. J. Appl. Phys., 83, 4004-4011(1998).

    [107] E.Dekel, D.Eliezer, S.Eliezer, I. B.Goldberg, Z.Henis, Y.Horovitz, S.Maman, E.Moshe, M.Werdiger. Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state. Appl. Phys. Lett., 76, 1555-1557(2000).

    [108] K.Baumung, G. I.Kanel, S. V.Razorenov, J.Singer. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. J. Appl. Phys., 90, 136-143(2001).

    [109] R.Adams, A. C.Bernstein, J.Brewer, D. A.Dalton, T.Ditmire, A.Edens, M.Geissel, W.Grigsby, E.Jackson, D.Milathianaki, P.Rambo, J.Schwarz, I.Smith, E.Taleff. Laser-induced spall of aluminum and aluminum alloys at high strain rates. AIP Conf. Proc., 955, 501(2007).

    [110] L.Berthe, M.Boustie, A.Claverie, J. P.Colombier, P.Combis, J. P.Cuq-Lelandais, T.de Rességuier, M.Nivard. Spallation generated by femtosecond laser driven shocks in thin metallic targets. J. Phys. D: Appl. Phys., 42, 065402(2009).

    [111] K. T.Ramesh, J. W.Wilkerson. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70, 262-280(2014).

    [112] R.Becker, J. D.Clayton, J. T.Lloyd, D. L.McDowell. Simulation of shock wave propagation in single crystal and polycrystalline aluminum. Int. J. Plast., 60, 118-144(2014).

    [113] F. L.Addessio, M. J.Cawkwell, D. J.Luscher, K. J.Ramos. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine. J. Mech. Phys. Solids, 98, 63-86(2017).

    [114] D. J.Luscher, T.Nguyen, J. W.Wilkerson. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals. J. Mech. Phys. Solids, 108, 1-29(2017).

    [115] D. J.Luscher, T.Nguyen, J. W.Wilkerson. A physics-based model and simple scaling law to predict the pressure dependence of single crystal spall strength. J. Mech. Phys. Solids, 137, 103875(2020).

    Haonan Sui, Long Yu, Wenbin Liu, Ying Liu, Yangyang Cheng, Huiling Duan. Theoretical models of void nucleation and growth for ductile metals under dynamic loading: A review[J]. Matter and Radiation at Extremes, 2022, 7(1): 018201
    Download Citation