• Laser & Optoelectronics Progress
  • Vol. 52, Issue 7, 71603 (2015)
Yang Wanxin* and Wang Yanmin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.071603 Cite this Article Set citation alerts
    Yang Wanxin, Wang Yanmin. Huge Absolute Photonic Band Gaps and Extreme Strong Photonic Attenuation Generated by Double-Pyramid Waveguide Network[J]. Laser & Optoelectronics Progress, 2015, 52(7): 71603 Copy Citation Text show less
    References

    [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059-2062.

    [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett, 1987, 58(23): 2486-2489.

    [3] Zhang Daozhong. Photonic crystal[J]. Phys, 1994, 23(3): 141-147.

    [4] Li Zhiyuan, Gu Benyuan, Yang Guozhen. Generation of large absolute band gaps in 2D anisotropic photonic crystals[J]. Phys, 1999, 28(4): 193-195.

    [5] Wan Jun, Zhang Chun, Wang Lingjun, et al.. Photonic crystals and their applications[J]. Phys, 1999, 28(7): 393-398.

    [6] Zhang Yonghua, Qiu Xinjie, Li Hongqiang, et al.. Progress of one-dimensional photonic crystals[J]. Phys, 2001, 30(10): 616-621.

    [7] Wang Dongdong, Wang Yongsheng, Zhang Xiqing, et al.. Tunable band gaps in photonic crystals[J]. Phys, 2003, 32(11): 757-761.9

    [8] Wang Xuehua, Gu Benyuan. Giant lamb shift in photonic crystals[J]. Phys, 2005, 34(1): 18-20.

    [9] Zhang Xunyuan, Shi Baosen, Guo Guangcan. Photonic crystal fiberfor quantum information[J]. Prog Phys, 2008, 28(1): 35-40.

    [10] Ni Peigen. Progress in the fabrication and application of photonic crystals[J]. Acta Phys Sin, 2010, 59(1): 340-350.

    [11] Zhang Z Q, Wong C C, Fung K K, et al.. Observation of localized electromagnetic waves in three-dimensional networks of waveguides[J]. Phys Rev Lett, 1998, 81(25): 5540-5543.

    [12] Dobrzynski L, Akjouj A, Djafari R B, et al.. Giant gaps in photonic band structures[J]. Phys Rev B, 1998, 57(16): R9388-R9391.

    [13] Cheung S T, Chan T L, Zhang Z Q, et al.. Large photonic band gaps in certain periodic and quasiperiodic networks in two and three dimensions[J]. Phys Rev B, 2004, 70(12): 125104.

    [14] Wang Z Y, Yang X. Strong attenuation within the photonic band gaps of multiconnected networks[J]. Phys Rev B, 2007, 76(23): 235104.

    [15] Mir A, Akjouj A, Vasseur J O, et al.. Observation of large photonic band gaps and defect modes in one-dimensional networked waveguides[J]. J Phys: Condens Mat, 2003, 15(10): 1593-1598.

    [16] Miyashita T, Sato W, Nakaso Y, et al.. Experimental studies on two-dimensional defect-mode waveguides in a sonic/phononic crystal[J]. Jpn J Appl Phys, 2007, 46(7B): 4684-4687.

    [17] Stoytchev M, Genack A Z. Microwave transmission through a periodic three-dimensional metal-wire network containing random scatterers[J]. Phys Rev B, 1997, 55(14): R8617-R8621.

    [18] Buchholz S S, Fischer S F, Kunze U, et al.. Control of the transmission phase in an asymmetric four-terminal Aharonov-Bohm interferometer[J]. Phys Rev B, 2010, 82(4): 045432.

    [19] Bianucci P, Fietz C R, Robertson J W, et al.. Observation of simultaneous fast and slow light[J]. Phys Rev A, 2008, 77(5): 053816.

    [20] Baba T. Slow light in photonic crystals[J]. Nature Photonics, 2008, 2(8): 465-473.

    [21] Feigenbaum E, Atwater H A. Resonant GuidedWave Networks[J]. Phys Rev Lett, 2010, 104(14): 147402.

    [22] Song H H, Yang X B. Photonic band structures of quadrangular multiconnected networks[J]. Chinese Phys B, 2010, 19(7): 074213.

    [23] Cai L, Yang X, Lu J. Large photonic band gap and strong attenuation of multiconnected Sierpinski network[J]. J Electromagnet Wave, 2011, 25(1): 147-160.

    [24] Xiao Q, Yang X, Lu J, et al.. Huge photonic band gaps with strong attenuations resulted from quasi-one-dimensional waveguide networks composed of triangular fundamental loops[J]. Opt Commun, 2012, 285(18): 3775-3780.

    [25] Yang X, Song H, Liu T C. Comb-like optical transmission spectrum resulting from a four-cornered two-waveguideconnected network[J]. Phys Lett A, 2013, 377(42): 3048-3051.

    [26] Wang Y, Yang X, Lu J, et al.. Comb-like optical transmission spectra generated from one-dimensional two-segmentconnected two-material waveguide networks optimized by genetic algorithm[J]. Phys Lett A, 2014, 378(16): 1200-1207.

    [27] Hizanidis K, Kominis Y, Efremidis N K. Hizanidis-interlaced linear-nonlinear optical waveguide arrays[J]. Opt Express, 2008, 16(22): 18296-18311.

    [28] Endo S, Oka T, Aoki H. Tight-binding photonic bands in metallophotonic waveguide networks and flat bands in kagome lattices[J]. Phys Rev B, 2010, 81(11): 113104.

    [29] Li M, Liu Y, Zhang Z Q. Photonic band structure of Sierpinski waveguide networks[J]. Phys Rev B, 2000, 61(23): 16193-16200.

    [30] Liu Y, Hou Z, Hui P M, et al.. Electronic transport properties of Sierpinski lattices[J]. Phys Rev B, 1999, 60(19): 13444-13452.

    [31] Lu J, Yang X, Cai L. Large photonic band gap and strong attenuation of multiconnected Peano network[J]. Opt Commun, 2012, 285(4): 459-464.

    Yang Wanxin, Wang Yanmin. Huge Absolute Photonic Band Gaps and Extreme Strong Photonic Attenuation Generated by Double-Pyramid Waveguide Network[J]. Laser & Optoelectronics Progress, 2015, 52(7): 71603
    Download Citation