[1] SMITH C H, GREENE B. The EOS space debris tracking system[C]. Hawaii(2006).
[2] SUN Hao, ZHANG Hai-feng, ZHANG Zhong-ping. Experiment on diffuse reflection laser ranging to space debris and data analysis[J]. Research in Astronomy and Astrophysics, 15, 909-917(2015).
[3] KELLY P W, BEVILACQUA R, MAZAL L. TugSat: removing space debris from geostationary orbits using solar sails[J]. Journal of Spacecraft and Rockets, 55, 437-450(2018).
[4] [webpage]. http://www.sastind.gov.cn/n127/n199/c335412/content.html
[5] ZHANG Hai-feng, DENG hua-rong, WU Zhi-bo. Observations of space debris by ground-based laser ranging system[J]. Spacecraft Environment Engineering, 33, 457-462(2016).
[6] Tao MEN, SHEN Zhao, XU rong. Development status and tendency of space target laser ranging technique[J]. Larser & Infrared, 42, 1451-1457(2018).
[7] ZHANG Zhong-ping, YANG Fu-min, WU Zhi-bo. Preliminary results of laser ranging to uncooperative targetsat shanghai SLR station[C], 695-699(2008).
[8] LI Yu-qiang, LI Zhu-lian, FU Hong-lin. Experimentation of diffuse reflection laser ranging of space debris[J]. Chinese Journal of Lasers, 38, 160-164(2011).
[9] ZHANG Zhong-ping, YANG Fu-min, ZHANG Hai-feng. The use of laser ranging to measure space debris[J]. Research in Astronomy and Astrophysics, 12, 212-218(2012).
[10] ZHANG Zhong-ping, ZHANG Hai-feng, WU Zhi-bo. Experiment of laser ranging to space debris based on high power solid-state laser system at 200Hz repetition rate[J]. Chinese Journal of Lasers, 41(2014).
[11] KIRCHNER G, KOIDL F, FRIEDERICH F. Laser measurements to space debris from Graz SLR station[J]. Advances in Space Research, 51, 21-24(2013).
[12] ZHANG Zhong-ping, ZHANG Hai-feng, LONG Ming-liang. High precision space debris laser ranging with 4.2 W double-pulse picosecond laser at 1 kHz in 532nm[J]. Optik, 179, 691-699(2019).
[13] DONG Xue, HAN Xing-wei, SONG Qing-li. Research of space debris laser ranging system[J]. Infrared and Laser Engineering, 45, 1-6(2016).
[14] WANG Pei-yuan, KOIDL F, KIRCHNER G. Contributions to sub-MHz SLR in Graz[C](2019).
[15] COURDE C, MARIEY H, CHABÉ J. High repetition rate SLR at GRSM[C](2019).
[16] SCHAFER D, SPROLL E, SPROLL F. Satellite laser ranging at 100 kHz pulse repetition rate[J]. CEAS Space Journal, 11, 363-370(2019).
[17] HAMPF D, WAGNER P, SCHAFER E. Concept for a new minimal SLR system[C](2018).
[18] HAMPF D, RIEDE W, STÖCKLE G. Ground-based optical position measurements of space debris in low earth orbits[C](2013).
[19] LAAS-BOUREZ M, WAILLIEZ S, DELEFLIE F. First astrometric observations of space debris with the MEO telescope[J]. Advances in Space Research, 49, 603-611(2011).
[20] SANG J, SMITH C, ZHANG K. Towards accurate atmospheric mass density determination using precise positional information of space objects[J]. Advances Space Research, 49, 1088-1096(2012).
[21] LI yu-qiang, LI Rong-wang, LI Zhu-lian. Application research on space debris laser ranging, infrared and laser engineering[J]. Infrared and Laser Engineering, 44, 3324-3329(2015).
[22] LI Zhu-lian, LI Yu-qiang, FU Hong-lin. Design and realization of a 10Hz diffuse-reflection laser ranging control system[J]. Astronomical Research and Technology, 3, 302-307(2012).
[23] LI Zhu-lian, ZHANG Hai-tao, LI Yu-qiang. 53 cm binocular telescope high repetition frequency space debrislaser ranging system[J]. Infrared and Laser Engineering, 46, 0729001(2017).
[24] LI Hao, CHEN Si-jing, YOU Li-xing. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging[J]. Optics Express, 24, 3535-3542(2016).
[26] STEINDORFER M A, KIRCHNER G, KOIDL F. Space debris science at the satellite laser ranging station Graz[C](2017).
[27] LONG Ming-liang, ZHANG Hai-feng, DENG Hua-rong. Laser ranging for space debris using double telescopes with kilometer level distance[J]. Acta Optica Sinica, 40, 0228002(2020).
[28] ZHANG Zhong-ping, ZHANG Hai-feng, DENG Hua-rong. Experiment of laser ranging to space debris by using two receiving telescopes[J]. Infrared and Laser Engineering, 45, 0102002(2016).
[29] ZHANG Hai-feng, LONG Ming-liang, DENG Hua-rong. Detection ability of laser ranging system based on multi-telescopesto receive echo signal[J]. Infrared and Laser Engineering, 47, 100-106(2018).
[30] SANG J, BENNETT J C, SMITH C H. Estimation of ballistic coefficients of low altitude debris objects from historical two line elements[J]. Advances in Space Research, 52, 117-124(2013).
[31] BENNETT J, SANG J, SMITH C. Improving low-earth orbit predictions using two-line element data with bias correction[C](2012).
[32] KIM S, BENNETT J C. Analysis of space debris orbit prediction using angle and laser ranging data from two tracking sites under limited observation environment[J]. Sensors, 20, 1950(2020).
[33] STEINDORFER M A, KIRCHNER G, KOIDL F. Daylight space debris laser ranging[J]. Nature Communications, 11, 3735(2020).
[34] COURDE C, TORRE J M, SAMAIN E. Lunar laser ranging in infrared at the Grasse laser station[J]. Astronomy & Astrophysics, 602(2017).
[35] MENG Wen-dong, ZHANG Hai-feng, DENG Hua-rong. 1.06 µm wavelength based high accuracy satellite laser ranging and space debris detection[J]. Acta Physica Sinica, 69, 019502(2020).
[36] LI Yu-qiang, FU Hong-lin, Li Rong-wang. Research and experiment of lunar laser ranging in Yunnan Observatories[J]. Chinese Journal of Lasers, 46, 0104004(2019).
[38] STEINDORFER M A, KIRCHNER G, KOIDL F. Space debris science at the satellite laser ranging station Graz[C](2017).
[39] TANG R, LI Z, LI Y. Light curve measurements with a superconducting nanowire single-photon detector[J]. Optics Letters, 43, 5488-5491(2018).
[40] LIU Tong, SHEN ming, GAO Peng-qi. Tumbling motion estimation of Rocket body based on diffuse reflection laser ranging[J]. Chinese Journal of Lasers, 46, 219-226(2019).
[41] ZHAO Si-si, STEINDORFER M, KIRCHNER G. Attitude analysis of space debris using SLR and light curve data measured with single-photon detector[J]. Advances in Space Research, 65, 1518-1527(2020).