• Laser & Optoelectronics Progress
  • Vol. 57, Issue 18, 181001 (2020)
Lixuan Chen1、2, Peng Rao1、*, Hanlu Zhu1、2, Yingying Sun1、2, and Liangjie Jia1、2
Author Affiliations
  • 1Key Laboratory of Intelligent Infrared Perception, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.181001 Cite this Article Set citation alerts
    Lixuan Chen, Peng Rao, Hanlu Zhu, Yingying Sun, Liangjie Jia. Denoising Method for Improving Detection Accuracy of Point Source Method by MTF[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181001 Copy Citation Text show less
    Schematic of point source method
    Fig. 1. Schematic of point source method
    Ideal two-dimensional Gaussian distribution. (a) Three-dimensional view; (b) sectional view
    Fig. 2. Ideal two-dimensional Gaussian distribution. (a) Three-dimensional view; (b) sectional view
    Influence of partition parameter P on partition
    Fig. 3. Influence of partition parameter P on partition
    Influence of partition parameter P on MSE of MTF (a=0.8). (a) MSE of image with noise standard deviation of 30 under various denoising methods; (b) relationship between parameter P and MSE under different noise standard deviations
    Fig. 4. Influence of partition parameter P on MSE of MTF (a=0.8). (a) MSE of image with noise standard deviation of 30 under various denoising methods; (b) relationship between parameter P and MSE under different noise standard deviations
    Influence of partition parameter a on data smoothing
    Fig. 5. Influence of partition parameter a on data smoothing
    Influence of smoothing parameter a on MSE of MTF (P=0.3). (a) MSE of image with noise standard deviation of 30 under various denoising methods; (b) relationship between parameter a and MSE under different noise standard deviations
    Fig. 6. Influence of smoothing parameter a on MSE of MTF (P=0.3). (a) MSE of image with noise standard deviation of 30 under various denoising methods; (b) relationship between parameter a and MSE under different noise standard deviations
    Sequence of out-of-focus images. (a) image 1; (b) image 2; (c) image 3; (d) image 4; (e) image 5; (f) image 6
    Fig. 7. Sequence of out-of-focus images. (a) image 1; (b) image 2; (c) image 3; (d) image 4; (e) image 5; (f) image 6
    Three-dimensional images and two-dimensional profiles of different denoising methods (noise standard deviation is 20). (a) Original point source image; (b) add noise point source image; (c) mean filtering; (d) median filtering; (e) wavelet filtering; (f) proposed method
    Fig. 8. Three-dimensional images and two-dimensional profiles of different denoising methods (noise standard deviation is 20). (a) Original point source image; (b) add noise point source image; (c) mean filtering; (d) median filtering; (e) wavelet filtering; (f) proposed method
    MTF measured after different denoising methods
    Fig. 9. MTF measured after different denoising methods
    MSE of MTF under different denoising methods
    Fig. 10. MSE of MTF under different denoising methods
    PSNR of images under different denoising methods
    Fig. 11. PSNR of images under different denoising methods
    SSIM of images under different denoising methods
    Fig. 12. SSIM of images under different denoising methods
    Sequences of captured out-of-focus source images. (a) -2.5 mm; (b) -2.0 mm; (c) -1.5 mm; (d) -1.0 mm; (e) 0 mm; (f) 1.0 mm; (g) +1.5 mm; (h) +2.0 mm; (i) +2.5 mm
    Fig. 13. Sequences of captured out-of-focus source images. (a) -2.5 mm; (b) -2.0 mm; (c) -1.5 mm; (d) -1.0 mm; (e) 0 mm; (f) 1.0 mm; (g) +1.5 mm; (h) +2.0 mm; (i) +2.5 mm
    MTF measured after different denoising methods (defocused amount: -2.5 mm)
    Fig. 14. MTF measured after different denoising methods (defocused amount: -2.5 mm)
    Standard deviationof noisePerformanceNoiseimageProposedmethodMean filteringmethodMedium filteringmethodWavelet filteringmethod
    MSE0.01070.00230.00540.00600.0047
    5PSNR39.512641.531441.082640.962641.1824
    SSIM0.95020.99400.98290.97890.9850
    MSE0.02050.00190.01100.01330.0087
    10PSNR32.677435.985335.136635.230835.4256
    SSIM0.76620.98140.93670.92360.9571
    MSE0.02700.00400.01550.01730.0127
    15PSNR28.279432.490631.620732.016231.9966
    SSIM0.51330.96160.86880.84520.9209
    MSE0.03210.00610.01930.02030.0159
    20PSNR25.157530.017229.105829.909929.5053
    SSIM0.32250.93910.78830.76010.8740
    MSE0.03300.00960.02100.02230.0186
    25PSNR22.896828.072227.170428.465027.5833
    SSIM0.21190.91480.70680.68480.8236
    MSE0.03380.00980.02300.02420.0200
    30PSNR21.174626.485125.580927.333225.9853
    SSIM0.14840.88750.62800.61730.7682
    MSE0.02620.00560.01590.01720.0134
    Mean valuePSNR28.283132.430331.616232.319631.9464
    SSIM0.48540.94640.81860.80160.8881
    Table 1. Performance comparison between proposed denoising method and traditional filtering methods
    ExperimentaldeviceParameterValue
    Light sourceCenterwavelength /nm550
    CMOS detectorCell size /mm0.00345
    LensFocal length /mm50
    Posteriorintercept/mm12.4
    Table 2. Parameters of experimental devices
    ParameterNoise imageMean filteringmethodMediumfiltering methodWavelet filteringmethodProposedmethod
    MTF curve area0.05630.05470.07060.05720.1403
    PSNRInf36.219936.407536.881032.1785
    SSIM10.84150.83370.83180.8283
    Table 3. Comparison between proposed denoising method and traditional filtering methods
    Lixuan Chen, Peng Rao, Hanlu Zhu, Yingying Sun, Liangjie Jia. Denoising Method for Improving Detection Accuracy of Point Source Method by MTF[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181001
    Download Citation