• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 5, 631 (2018)
YANG Bin1、2、3、*, WANG Bin1、2、3, and WU Zong-Min4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.05.017 Cite this Article
    YANG Bin, WANG Bin, WU Zong-Min. Nonlinear spectral unmixing for hyperspectral imagery based on bilinear mixture models[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 631 Copy Citation Text show less
    References

    [1] Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2012, 5(2):354-379.

    [2] Tong Q, Xue Y, Zhang L. Progress in hyperspectral remote sensing science and technology in china over the past three decades [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014, 7(1): 70-91.

    [3] Keshava N, Mustard J F. Spectral unmixing [J]. IEEE Signal Process. Mag., 2002, 19(1): 44-57.

    [4] Heylen R, Parente M, Gader P. A review of nonlinear hyperspectral unmixing methods [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014,7(6):1844-1868.

    [5] Dobigeon N, Tourneret J, Richard C, et al. Nonlinear unmixing of hyperspectral images: models and algorithms [J]. IEEE Signal Process. Mag., 2014, 31(1):82-94.

    [6] Hapke B W. Bidirectional reflectance spectroscopy. I. Theory [J]. J. Geophys. Res., 1981, 86: 3039-3054.

    [7] Nascimento J M P, Bioucas-Dias J M. Nonlinear mixture model for hyperspectral unmixing [J]. in Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE), Image Signal Process. Remote Sens. XV, 2009, 7477:1-8.

    [8] Fan W, Hu B, Miller J, et al. Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated forest hyperspectral data [J]. Int. J. Remote Sens., 2009, 30(11): 2951-2962.

    [9] Halimi A, Altmann Y, Dobigeon N, et al. Nonlinear unmixing of hyperspectral images using a generalized bilinear model [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(11): 4153-4162.

    [10] Altmann Y, Halimi A, Dobigeon N, et al. Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery [J]. IEEE Trans. Image Process., 2012, 21(6):3017-3025.

    [11] Somers B, Tits L, Coppin P. Quantifying nonlinear spectral mixing in vegetated areas: Computer simulation model validation and first results [J]. IEEE J. Sel. Topics Appl. Earth Observ., 2014, 7(6):1956-1965.

    [12] Dobigeon N, Tits L, Somers B, et al. A comparison of nonlinear mixing models for vegetated areas using simulated and real hyperspectral data [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014, 7(6): 1869-1878.

    [13] Heylen R, Scheunders P. A multilinear mixing model for nonlinear spectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2015, 54(1): 240-251.

    [14] Marinoni A, Gamba P. A novel approach for efficient p-linear hyperspectral unmixing [J]. IEEE J. Sel. Signal Process, 2015, 9(6):1156-1168.

    [15] Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data [J]. IEEE Trans. Geosci. Remote Sens., 2005, 43(4):898-910.

    [16] Heylen R, Scheunders P. Calculation of geodesic distances in non-linear mixing models: application to the generalized bilinear model[J]. IEEE Geosci. Remote Sens. Lett., 2012, 9(4):644-648.

    [17] Eches O, Guillaume M. A bilinear-bilinear nonnegative matrix factorization method for hyperspectral unmixing [J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(4):778-782.

    [18] Yokoya N, Chanussot J, Iwasaki A. Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization [J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(2):1430-1437.

    [19] Pu H, Chen Z, Wang B, et al. Constrained least squares algorithms for nonlinear unmixing of hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(3):1287-1303.

    [20] Li C, Ma Y, Huang J, et al. GBM-based unmixing of hyperspectral data using bound projected optimal gradient method [J]. IEEE Geosci. Remote Sens. Lett., 2016, 13(7):952-956.

    [21] Li J, Li J, Huang B, et al. Hopfield neural network approach for supervised nonlinear spectral unmixing [J]. IEEE Geosci. Remote Sens. Lett., 2016, 13(7):1002-1006.

    [22] Luo W, Gao L, Plaza A, et al. A new algorithm for bilinear spectral unmixing of hyperspectral images using particle swarm optimization [J/OL]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2016. http://ieeexplore.ieee.org/document/7569014/.

    [23] Cui J, Li X, Zhao L. Nonlinear spectral mixture analysis by determining per-pixel endmember sets [J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(8):1404-1408.

    [24] Qu Q, Nasrabadi N M, Tran T D. Abundance estimation for bilinear mixture models via joint sparse and low-rank representation [J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(7): 4404-4423.

    [25] Ma L, Chen J, Zhou Y, et al. Two-step constrained nonlinear spectral mixture analysis method for mitigating the collinearity effect [J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(5): 2873-2886.

    [26] Heinz D C, Chang C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(3):529-545.

    [27] Broadwater J, Chellappa R, Banerjee A, et al. Kernel fully constrained least squares abundance estimates [C]. Barcelona: 2007.

    [28] Bioucas-Dias J M, Nascimento J M P. Hyperspectral subspace identification [J]. IEEE Trans. Geosci. Remote Sens., 2008, 46(8): 2435-2445.

    [29] Swayze G, Clark R, Sutley S, et al. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada[J]. Summaries of the Third Annual JPL Airborne Geosciences Workshop,1992, AVIRIS Workshop JPL Publication: 47-49.

    [30] Bethel J, Lee C, Landgrebe D A. Geometric registration and classification of hyperspectral airborne pushbroom data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33:183-190.

    CLP Journals

    [1] YANG Huadong, CHEN Heyuan. Endmember Extraction Algorithm Based on Geodesic Distance and Orthogonal Projection[J]. Semiconductor Optoelectronics, 2023, 44(2): 307

    YANG Bin, WANG Bin, WU Zong-Min. Nonlinear spectral unmixing for hyperspectral imagery based on bilinear mixture models[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 631
    Download Citation