• Laser & Optoelectronics Progress
  • Vol. 54, Issue 1, 12401 (2017)
Wu Dongqin*, Huang Chong, and Yang Weifeng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.012401 Cite this Article Set citation alerts
    Wu Dongqin, Huang Chong, Yang Weifeng. Improvement on pH Sensing Properties Based on Surface Treatment of Graphene Plasma[J]. Laser & Optoelectronics Progress, 2017, 54(1): 12401 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [2] Chen H, Müller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials, 2008, 20(18): 3557-3561.

    [3] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

    [4] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.

    [5] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1): 323-327.

    [6] Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Letters, 2009, 9(12): 4359-4363.

    [7] Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.

    [8] Dong X, Shi Y, Huang W, et al. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets[J]. Advanced Materials, 2010, 22(14): 1649-1653.

    [9] Shao Y, Wang J, Wu H, et al. Graphene based electrochemical sensors and biosensors: a review[J]. Electroanalysis, 2010, 22(10): 1027-1036.

    [10] Chen T Y, Loan P T, Hsu C L, et al. Label-free detection of DNA hybridization using transistors based on CVD grown graphene[J]. Biosensors and Bioelectronics, 2013, 41: 103-109.

    [11] Chen X, Zhang L, Chen S. Large area CVD growth of graphene[J]. Synthetic Metals, 2015, 210: 95-108.

    [12] Li X S, Cai W W, An J B, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.

    [13] Deokar G, Avila J, Razado-Colambo I, et al. Towards high quality CVD graphene growth and transfer[J]. Carbon, 2015, 89: 82-92.

    [14] Pizzocchero F, Jessen B S, Whelan P R, et al. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts[J]. Carbon, 2015, 85: 397-405.

    [15] Lin Y C, Lin C Y, Chiu P W. Controllable graphene N-doping with ammonia plasma[J]. Applied Physics Letters, 2010, 96(13): 133110.

    [16] Nourbakhsh A, Cantoro M, Vosch T, et al. Bandgap opening in oxygen plasma-treated graphene[J]. Nanotechnology, 2010, 21(43): 435203.

    [17] Choi M S, Lee S H, Yoo W J. Plasma treatments to improve metal contacts in graphene field effect transistor[J]. Journal of Applied Physics, 2011, 110(7): 073305.

    [18] Ibrahim A, Akhtar S, Atieh M, et al. Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition[J]. Carbon, 2015, 94: 369-377.

    [19] Li Z, Wang Y, Kozbial A, et al. Effect of airborne contaminants on the wettability of supported graphene and graphite[J]. Nature Materials, 2013, 12(10): 925-931.

    [20] Eckmann A, Felten A, Mishchenko A, et al. Probing the nature of defects in graphene by Raman spectroscopy[J]. Nano Letters, 2012, 12(8): 3925-3930.

    [21] Imenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1291.

    [22] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.

    [23] Poh H L, aněk F, Ambrosi A, et al. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties[J]. Nanoscale, 2012, 4(11): 3515-3522.

    [24] Chen C H, Lin C T, Hsu W L, et al. A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording[J]. Nanomedicine, 2013, 9(5): 600-604.

    Wu Dongqin, Huang Chong, Yang Weifeng. Improvement on pH Sensing Properties Based on Surface Treatment of Graphene Plasma[J]. Laser & Optoelectronics Progress, 2017, 54(1): 12401
    Download Citation