• Acta Optica Sinica
  • Vol. 37, Issue 2, 201003 (2017)
Hong Guanglie1、*, Li Jiatang1、2, Kong Wei1, Ge Ye1, and Shu Rong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0201003 Cite this Article Set citation alerts
    Hong Guanglie, Li Jiatang, Kong Wei, Ge Ye, Shu Rong. 935 nm Differential Absorption Lidar System and Water Vapor Profiles in Convective Boundary Layer[J]. Acta Optica Sinica, 2017, 37(2): 201003 Copy Citation Text show less
    References

    [1] Kiemle C, Brewer W A, Ehret G, et al. Latent heat flux profiles from collocated airborne water vapor and wind lidars during IHOP_2002[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(4): 627-639.

    [2] Li Tao, Qi Fudi, Yue Guming, et al. Raman lidar system for the measurements of water vapor mixing ratio in the atmosphere[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(6): 843-854.

    [3] Yin Qiwei. Experiment research of water vapor detection with Raman scattering of laser[D]. Qingdao: Ocean University of China, 2011.

    [4] Wang Hongwei, Hua Dengxin, Wang Yufeng, et al. Design and analysis of new spectroscopic system of Raman lidar for detection of atmospheric water vapor[J]. Acta Physica Sinica, 2013, 62(12): 120701.

    [5] Wang Yufeng, Gao Fei, Zhu Chengxuan, et al. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height[J]. Acta Optica Sinica, 2015, 35(3): 0328004.

    [6] Xie Chenbo, Zhou Jun, Yue Guming, et al. New mobile Raman lidar for measurement of tropospheric water vapor[J]. Acta Optica Sinica, 2006, 26(9): 1281-1286.

    [7] Higdon N S, Browell E V, Ponsardin P, et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols[J]. Applied Optics, 1994, 33(27): 6422-6438.

    [8] Bruneau D, Quaglia P, Flamant C, et al. Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description[J]. Applied Optics, 2001, 40(21): 3450-3461.

    [9] Poberaj G, Fix A, Assion A, et al. Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: System description and assessment of accuracy[J]. Applied Physics B, 2002, 75(2): 165-172.

    [10] Ge Ye, Shu Rong, Hu Yihua, et al. System design and performance simulation of ground-based differential absorption lidar for water-vapor measurements[J]. Acta Physica Sinica, 2014, 63(20): 204301.

    [11] Park Y K, Giuliani G, Byer R L. Single axial mode operation of a Q-switched Nd∶YAG oscillator by injection seeding[J]. IEEE Journal of Quantum Electronics, 1984, 20(2): 117-124.

    [12] Measures R M. Laser remote sensing: Fundamentals and applications[M]. Malabar: Krieger Publishing Company, 1984: 686.

    [13] Ansmann A, Bosenberg J. Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere[J]. Applied Optics, 1987, 26(15): 3026-3032.

    [14] Ismail S, Browell E V. Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis[J]. Applied Optics, 1989, 28(17): 3603-3615.

    [15] Saleh B. Photoelectron statistics[M]. Heidelberg: Springer, 1978.

    CLP Journals

    [1] Hong Guanglie, Li Jiatang, Wang Jianyu, Li Hu, Wang Yinan, Kong Wei. Advance of ground based differential absorption lidar at 0.94 μm[J]. Infrared and Laser Engineering, 2019, 48(12): 1203009

    Hong Guanglie, Li Jiatang, Kong Wei, Ge Ye, Shu Rong. 935 nm Differential Absorption Lidar System and Water Vapor Profiles in Convective Boundary Layer[J]. Acta Optica Sinica, 2017, 37(2): 201003
    Download Citation