• Laser & Optoelectronics Progress
  • Vol. 49, Issue 4, 43101 (2012)
Shao Biao1、2、*, Zhang Ruiying2, Zhao Chunyu2, Dong Jianrong2, Yang Hui2, and Zhang Jincang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop49.043101 Cite this Article Set citation alerts
    Shao Biao, Zhang Ruiying, Zhao Chunyu, Dong Jianrong, Yang Hui, Zhang Jincang. Absorption Enhancement Induced by Nanocone Grating in Si Thin Film Solar Cells[J]. Laser & Optoelectronics Progress, 2012, 49(4): 43101 Copy Citation Text show less
    References

    [1] M. A. Green, J. Zhao, A. Wang et al.. Very high efficiency silicon solar cells-science and technology[J]. IEEE Transactions on Electron Devices, 1999, 46(10): 1940~1947

    [2] J. Zhao, A. Wang, M. A. Green et al.. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells[J]. Appl. Phys. Lett., 1998, 73(14): 1991~1993

    [3] B. S. Thornton. Limit of the moth′s eye principle and other impedance-matching corrugations for solar-absorber design[J]. J. Opt. Soc. Am., 1975, 65(3): 267~270

    [4] Daniel Poitras, J. A. Dobrowolski. Toward perfect antireflection coatings.2. theory[J]. Appl. Opt., 2004, 43(6): 1286~1295

    [5] Ma Youqiao, Zhou Jun, Sun Tietun et al.. Design of antireflection structure of photovoltaic cells with sub-wavelength grating based on EMT[J]. Acta Energiae Solaris Sinica, 2010, 31(10): 1353~1358

    [6] Young Min Song, Sung Jun Jang, Jae Su Yu et al.. Bioinspired parabola subwavelength structures for improved broadband antireflection[J]. Small, 2010, 6(9): 984~987

    [7] C. H. Chiu, Peichen Yu, H. C. Kuo et al.. Broadband and omnidirectional antireflection employing disordered GaN nanopillars[J]. Opt. Express, 2008, 16(12): 8748~8754

    [8] A. Gombert, W. Glaubitt, K. Rose et al.. Subwavelength-structured antireflective surfaces on glass[J]. Thin Solid Films, 1999, 351: 73~78

    [9] Chia Jen Ting, Fuh-Yu Chang, Chi Feng Chen et al.. Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process[J]. J. Micromech. Microeng., 2008, 18(7): 075001

    [10] H. L. Chen, S. Y. Chuang, C. H. Lin et al.. Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells[J]. Opt. Express, 2007, 15(22): 14793~14803

    [11] Darin Madzharov, Rahul Dewan, Dietmar Knipp. Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells[J]. Opt. Express, 2011, 19(52): 95~107

    [12] Stephen Y. Chou, Wenyong Deng. Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates[J]. Appl. Phys. Lett., 1995, 67(6): 742

    [13] M. G. Moharam, T. k. Gaylord. Rigorous coupled-wave analysis of planar-grating diffraction[J]. J. Opt. Soc. Am., 1981, 71(7): 811~818

    [14] M. G. Moharam, T. k. Gaylord. Rigorous coupled-wave analysis of metallic surface-relief gratings[J]. J. Opt. Soc. Am. A, 1986, 3(11): 1780~1787

    [15] M. G. Moharam, D. A. Pommet, E. B. Grann et al.. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. J. Opt. Soc. Am. A, 1995, 12(5): 1077~1086

    [16] C. Sun, W. Min, C. Linn Nicholas et al.. Templated fabrication of large area subwavelength antireflection gratings on silicon[J]. Appl. Phys. Lett., 2007, 91(23): 231105

    [17] M. Hu, R. Yu, J. Macmanusdriscoll et al.. Large-area silica nanotubes with controllable geometry on silicon substrates[J]. Appl. Surface Science, 2009, 255(6): 3563~3566

    [18] Li Mengke, Lu Mei, Kong Lingbin et al.. Photoluminescence properties of silicon nano wires and carbon nanotube-silicon nanowire composite arrays[J]. Chin. Phys. Lett., 2002, 19(11): 1703~1706

    [19] J. Liang, H. Luo, R. Beresford et al.. A growth pathway for highly ordered quantum dot arrays[J]. Appl. Phys. Lett., 2004, 85(24): 5974

    [20] Y. Wang, N. Lu, H. Xu et al.. Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings[J]. Nano Research, 2010, 3(7): 520~527

    [21] Jian Xu, Yi Yin, Haiming Ma et al.. A novel trilayer antireflection coating using dip-coating technique[J]. Chin. Opt. Lett., 2011, 9(7): 073101

    [22] H. Xu, N. Lu, D. Qi et al.. Broadband antireflective Si nanopillar arrays produced by nanosphere lithography[J]. Microelectronic Engineering, 2009, 86(4): 850~852

    [23] W. Wang, S. Wu, Kitt ReinHardt et al.. Broadband light absorption enhancement in thin-film silicon solar cells[J]. Nano Lett., 2010, 10(6): 2012~2018

    Shao Biao, Zhang Ruiying, Zhao Chunyu, Dong Jianrong, Yang Hui, Zhang Jincang. Absorption Enhancement Induced by Nanocone Grating in Si Thin Film Solar Cells[J]. Laser & Optoelectronics Progress, 2012, 49(4): 43101
    Download Citation